一种结合正字法和语义相似度信息的基于分类的同源词检测方法

Sofie Labat, Els Lefever
{"title":"一种结合正字法和语义相似度信息的基于分类的同源词检测方法","authors":"Sofie Labat, Els Lefever","doi":"10.26615/978-954-452-056-4_071","DOIUrl":null,"url":null,"abstract":"This paper presents proof-of-concept experiments for combining orthographic and semantic information to distinguish cognates from non-cognates. To this end, a context-independent gold standard is developed by manually labelling English-Dutch pairs of cognates and false friends in bilingual term lists. These annotated cognate pairs are then used to train and evaluate a supervised binary classification system for the automatic detection of cognates. Two types of information sources are incorporated in the classifier: fifteen string similarity metrics capture form similarity between source and target words, while word embeddings model semantic similarity between the words. The experimental results show that even though the system already achieves good results by only incorporating orthographic information, the performance further improves by including semantic information in the form of embeddings.","PeriodicalId":284493,"journal":{"name":"Recent Advances in Natural Language Processing","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Classification-Based Approach to Cognate Detection Combining Orthographic and Semantic Similarity Information\",\"authors\":\"Sofie Labat, Els Lefever\",\"doi\":\"10.26615/978-954-452-056-4_071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents proof-of-concept experiments for combining orthographic and semantic information to distinguish cognates from non-cognates. To this end, a context-independent gold standard is developed by manually labelling English-Dutch pairs of cognates and false friends in bilingual term lists. These annotated cognate pairs are then used to train and evaluate a supervised binary classification system for the automatic detection of cognates. Two types of information sources are incorporated in the classifier: fifteen string similarity metrics capture form similarity between source and target words, while word embeddings model semantic similarity between the words. The experimental results show that even though the system already achieves good results by only incorporating orthographic information, the performance further improves by including semantic information in the form of embeddings.\",\"PeriodicalId\":284493,\"journal\":{\"name\":\"Recent Advances in Natural Language Processing\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Advances in Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26615/978-954-452-056-4_071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26615/978-954-452-056-4_071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了结合正字法和语义信息来区分同源词和非同源词的概念验证实验。为此,通过在双语术语列表中手动标记英语-荷兰语同源词对和假朋友词,开发了一个与上下文无关的黄金标准。然后使用这些标注的同源词对来训练和评估用于自动检测同源词的监督二元分类系统。分类器中包含两种类型的信息源:15个字符串相似度度量捕获源词和目标词之间的形式相似度,而词嵌入建模词之间的语义相似度。实验结果表明,虽然系统在仅加入正字法信息时已经取得了较好的效果,但在以嵌入的形式加入语义信息后,性能进一步提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Classification-Based Approach to Cognate Detection Combining Orthographic and Semantic Similarity Information
This paper presents proof-of-concept experiments for combining orthographic and semantic information to distinguish cognates from non-cognates. To this end, a context-independent gold standard is developed by manually labelling English-Dutch pairs of cognates and false friends in bilingual term lists. These annotated cognate pairs are then used to train and evaluate a supervised binary classification system for the automatic detection of cognates. Two types of information sources are incorporated in the classifier: fifteen string similarity metrics capture form similarity between source and target words, while word embeddings model semantic similarity between the words. The experimental results show that even though the system already achieves good results by only incorporating orthographic information, the performance further improves by including semantic information in the form of embeddings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信