{"title":"寻找满意度问题的困难实例:一项调查","authors":"S. Cook, D. Mitchell","doi":"10.1090/dimacs/035/01","DOIUrl":null,"url":null,"abstract":"Finding sets of hard instances of propositional satissability is of interest for understanding the complexity of SAT, and for experimentally evaluating SAT algorithms. In discussing this we consider the performance of the most popular SAT algorithms on random problems, the theory of average case complexity, the threshold phenomenon, known lower bounds for certain classes of algorithms, and the problem of generating hard instances with solutions.","PeriodicalId":434373,"journal":{"name":"Satisfiability Problem: Theory and Applications","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"267","resultStr":"{\"title\":\"Finding hard instances of the satisfiability problem: A survey\",\"authors\":\"S. Cook, D. Mitchell\",\"doi\":\"10.1090/dimacs/035/01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finding sets of hard instances of propositional satissability is of interest for understanding the complexity of SAT, and for experimentally evaluating SAT algorithms. In discussing this we consider the performance of the most popular SAT algorithms on random problems, the theory of average case complexity, the threshold phenomenon, known lower bounds for certain classes of algorithms, and the problem of generating hard instances with solutions.\",\"PeriodicalId\":434373,\"journal\":{\"name\":\"Satisfiability Problem: Theory and Applications\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"267\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Satisfiability Problem: Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/dimacs/035/01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Satisfiability Problem: Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/dimacs/035/01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finding hard instances of the satisfiability problem: A survey
Finding sets of hard instances of propositional satissability is of interest for understanding the complexity of SAT, and for experimentally evaluating SAT algorithms. In discussing this we consider the performance of the most popular SAT algorithms on random problems, the theory of average case complexity, the threshold phenomenon, known lower bounds for certain classes of algorithms, and the problem of generating hard instances with solutions.