基于语义嵌入递归神经网络的音乐情感分析

J. Jakubík, H. Kwasnicka
{"title":"基于语义嵌入递归神经网络的音乐情感分析","authors":"J. Jakubík, H. Kwasnicka","doi":"10.1109/INISTA.2017.8001169","DOIUrl":null,"url":null,"abstract":"The paper presents an original approach to music emotion recognition. We propose to use recurrent neural networks to separate the representation learning process from the classifier, which allows us to use a Support Vector Machine on top of a network to improve the results. We define a suitable loss function that is able to find a feature space in which similarity between vectors representing the music recordings corresponds to the similarity between their annotations. The proposed method was tested for regression and classification using two datasets. The results are presented and discussed.","PeriodicalId":314687,"journal":{"name":"2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Music emotion analysis using semantic embedding recurrent neural networks\",\"authors\":\"J. Jakubík, H. Kwasnicka\",\"doi\":\"10.1109/INISTA.2017.8001169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents an original approach to music emotion recognition. We propose to use recurrent neural networks to separate the representation learning process from the classifier, which allows us to use a Support Vector Machine on top of a network to improve the results. We define a suitable loss function that is able to find a feature space in which similarity between vectors representing the music recordings corresponds to the similarity between their annotations. The proposed method was tested for regression and classification using two datasets. The results are presented and discussed.\",\"PeriodicalId\":314687,\"journal\":{\"name\":\"2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INISTA.2017.8001169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2017.8001169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了一种新颖的音乐情感识别方法。我们建议使用递归神经网络将表示学习过程与分类器分离,这允许我们在网络上使用支持向量机来改进结果。我们定义了一个合适的损失函数,它能够找到一个特征空间,其中表示音乐录音的向量之间的相似性对应于它们注释之间的相似性。使用两个数据集对该方法进行了回归和分类测试。给出了实验结果并进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Music emotion analysis using semantic embedding recurrent neural networks
The paper presents an original approach to music emotion recognition. We propose to use recurrent neural networks to separate the representation learning process from the classifier, which allows us to use a Support Vector Machine on top of a network to improve the results. We define a suitable loss function that is able to find a feature space in which similarity between vectors representing the music recordings corresponds to the similarity between their annotations. The proposed method was tested for regression and classification using two datasets. The results are presented and discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信