基于LTE FDD和TDD的智能电网通信网络对上行偏置业务的性能比较

Jason Brown, J. Khan
{"title":"基于LTE FDD和TDD的智能电网通信网络对上行偏置业务的性能比较","authors":"Jason Brown, J. Khan","doi":"10.1109/SmartGridComm.2012.6485996","DOIUrl":null,"url":null,"abstract":"LTE is a candidate wide area communications network for the Smart Grid and can enable applications such as AMI, Demand Response and WAMS. We compare the uplink performance of the LTE FDD and TDD modes for a typical Smart Grid scenario involving a large number of devices sending small to medium size packets to understand the advantages and disadvantages of these two modes. An OPNET simulation model is employed to facilitate realistic comparisons based upon latency and channel utilization. We demonstrate that there is a critical packet size above which there is a step increase in uplink latency due to the nature of the LTE uplink resource scheduling process. It is shown that FDD leads to better uplink performance in terms of latency, while TDD can provide greater flexibility when the split between uplink and downlink data is asymmetrical (as it is expected to be in a Smart Grid environment). It is also demonstrated that the capacity of both FDD and TDD systems in terms of the number of serviced devices is control channel (PDCCH) limited for small infrequent packets, but TDD has the advantage that the capacity remains data channel (PUSCH) limited for smaller packet sizes and lower data burst rates than an FDD system.","PeriodicalId":143915,"journal":{"name":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Performance comparison of LTE FDD and TDD based Smart Grid communications networks for uplink biased traffic\",\"authors\":\"Jason Brown, J. Khan\",\"doi\":\"10.1109/SmartGridComm.2012.6485996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"LTE is a candidate wide area communications network for the Smart Grid and can enable applications such as AMI, Demand Response and WAMS. We compare the uplink performance of the LTE FDD and TDD modes for a typical Smart Grid scenario involving a large number of devices sending small to medium size packets to understand the advantages and disadvantages of these two modes. An OPNET simulation model is employed to facilitate realistic comparisons based upon latency and channel utilization. We demonstrate that there is a critical packet size above which there is a step increase in uplink latency due to the nature of the LTE uplink resource scheduling process. It is shown that FDD leads to better uplink performance in terms of latency, while TDD can provide greater flexibility when the split between uplink and downlink data is asymmetrical (as it is expected to be in a Smart Grid environment). It is also demonstrated that the capacity of both FDD and TDD systems in terms of the number of serviced devices is control channel (PDCCH) limited for small infrequent packets, but TDD has the advantage that the capacity remains data channel (PUSCH) limited for smaller packet sizes and lower data burst rates than an FDD system.\",\"PeriodicalId\":143915,\"journal\":{\"name\":\"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2012.6485996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2012.6485996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

LTE是智能电网的候选广域通信网络,可以实现AMI、需求响应和WAMS等应用。在典型的智能电网场景中,我们比较了LTE FDD和TDD模式的上行链路性能,该场景涉及大量设备发送中小型数据包,以了解这两种模式的优缺点。采用OPNET仿真模型,根据时延和信道利用率进行比较。我们证明,由于LTE上行资源调度过程的性质,存在一个关键数据包大小,在此之上上行延迟会逐步增加。结果表明,在延迟方面,FDD导致更好的上行链路性能,而TDD可以在上行链路和下行链路数据之间的分割不对称时提供更大的灵活性(正如在智能电网环境中预期的那样)。研究还表明,就服务设备的数量而言,FDD和TDD系统的容量对于小而不频繁的数据包都受到控制通道(PDCCH)的限制,但与FDD系统相比,TDD的优势在于,对于较小的数据包大小和较低的数据突发率,容量仍然保持数据通道(PUSCH)限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance comparison of LTE FDD and TDD based Smart Grid communications networks for uplink biased traffic
LTE is a candidate wide area communications network for the Smart Grid and can enable applications such as AMI, Demand Response and WAMS. We compare the uplink performance of the LTE FDD and TDD modes for a typical Smart Grid scenario involving a large number of devices sending small to medium size packets to understand the advantages and disadvantages of these two modes. An OPNET simulation model is employed to facilitate realistic comparisons based upon latency and channel utilization. We demonstrate that there is a critical packet size above which there is a step increase in uplink latency due to the nature of the LTE uplink resource scheduling process. It is shown that FDD leads to better uplink performance in terms of latency, while TDD can provide greater flexibility when the split between uplink and downlink data is asymmetrical (as it is expected to be in a Smart Grid environment). It is also demonstrated that the capacity of both FDD and TDD systems in terms of the number of serviced devices is control channel (PDCCH) limited for small infrequent packets, but TDD has the advantage that the capacity remains data channel (PUSCH) limited for smaller packet sizes and lower data burst rates than an FDD system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信