确定固定收益计划的养老金利益义务:应用多元ARIMA随机模型

J. T. Query, Evaristo Diz
{"title":"确定固定收益计划的养老金利益义务:应用多元ARIMA随机模型","authors":"J. T. Query, Evaristo Diz","doi":"10.21013/jmss.v17.n4.p5","DOIUrl":null,"url":null,"abstract":"In this study we examine the robustness of fit for a multivariate and an autoregressive integrated moving average model to a data sample time series type.  The sample is a recurrent actuarial data set for a 10-year horizon.  We utilize this methodology to contrast with stochastic models to make projections beyond the data horizon. Our key results suggest that both types of models are useful for making predictions of actuarial liability levels given by PBO Projected Benefit Obligations on and off the horizon of the sample time series.  As we have seen in prior research, the use of multivariate models for control and auditing purposes is widely recommended.  Fast and reliable statistical estimates are desirable in all cases, whether for audit purposes or to verify and validate miscellaneous actuarial results.","PeriodicalId":302903,"journal":{"name":"IRA-International Journal of Management & Social Sciences (ISSN 2455-2267)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining the Pension Benefit Obligation of a Defined Benefit Plan: Applying a Multivariate ARIMA Stochastic Model\",\"authors\":\"J. T. Query, Evaristo Diz\",\"doi\":\"10.21013/jmss.v17.n4.p5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study we examine the robustness of fit for a multivariate and an autoregressive integrated moving average model to a data sample time series type.  The sample is a recurrent actuarial data set for a 10-year horizon.  We utilize this methodology to contrast with stochastic models to make projections beyond the data horizon. Our key results suggest that both types of models are useful for making predictions of actuarial liability levels given by PBO Projected Benefit Obligations on and off the horizon of the sample time series.  As we have seen in prior research, the use of multivariate models for control and auditing purposes is widely recommended.  Fast and reliable statistical estimates are desirable in all cases, whether for audit purposes or to verify and validate miscellaneous actuarial results.\",\"PeriodicalId\":302903,\"journal\":{\"name\":\"IRA-International Journal of Management & Social Sciences (ISSN 2455-2267)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IRA-International Journal of Management & Social Sciences (ISSN 2455-2267)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21013/jmss.v17.n4.p5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IRA-International Journal of Management & Social Sciences (ISSN 2455-2267)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21013/jmss.v17.n4.p5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们检验了多变量和自回归综合移动平均模型对数据样本时间序列类型的拟合稳健性。样本是10年期的定期精算数据集。我们利用这种方法与随机模型进行对比,以做出超出数据范围的预测。我们的主要结果表明,这两种类型的模型都有助于在样本时间序列的范围内和范围外对PBO预计收益义务给出的精算负债水平进行预测。正如我们在先前的研究中所看到的,广泛推荐使用多变量模型进行控制和审计。在所有情况下,无论是为了审计目的还是为了核实和确认各种精算结果,都需要快速和可靠的统计估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determining the Pension Benefit Obligation of a Defined Benefit Plan: Applying a Multivariate ARIMA Stochastic Model
In this study we examine the robustness of fit for a multivariate and an autoregressive integrated moving average model to a data sample time series type.  The sample is a recurrent actuarial data set for a 10-year horizon.  We utilize this methodology to contrast with stochastic models to make projections beyond the data horizon. Our key results suggest that both types of models are useful for making predictions of actuarial liability levels given by PBO Projected Benefit Obligations on and off the horizon of the sample time series.  As we have seen in prior research, the use of multivariate models for control and auditing purposes is widely recommended.  Fast and reliable statistical estimates are desirable in all cases, whether for audit purposes or to verify and validate miscellaneous actuarial results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信