基于宽带介电光谱和TDR的土壤频率相关衰减分析

M. Loewer, J. Igel, N. Wagner
{"title":"基于宽带介电光谱和TDR的土壤频率相关衰减分析","authors":"M. Loewer, J. Igel, N. Wagner","doi":"10.1109/ICGPR.2014.6970415","DOIUrl":null,"url":null,"abstract":"Our objective is the development of a prognosis system that predicts the soil-dependent GPR performance in landmine and improvised explosive device (IED) contaminated areas. One of the soil properties influencing sensing depth and image resolution of GPR is intrinsic attenuation. We investigated the frequency-dependent electromagnetic properties of a broad range of soil samples. In order to derive the complex dielectric permittivity between 1 MHz and 10 GHz, we applied the coaxial transmission line (CTL) method using two coaxial cells. A model was fitted to the data consisting of a combination of one Debye and one Cole-Cole type relaxation and a constant low-frequency conductivity term. We show that relaxation mechanisms play a crucial role in most natural soils. Attenuation cannot be described by dc-conductivity alone, especially for high-frequency applications. Therefore, a simple conductivity-attenuation relation without relaxations can highly underestimate GPR performance. As an alternative to the CTL technique, we propose to use time-domain reflectometry (TDR) for a quick prediction of high-frequency effective conductivity and GPR performance in the field.","PeriodicalId":212710,"journal":{"name":"Proceedings of the 15th International Conference on Ground Penetrating Radar","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Frequency-dependent attenuation analysis in soils using broadband dielectric spectroscopy and TDR\",\"authors\":\"M. Loewer, J. Igel, N. Wagner\",\"doi\":\"10.1109/ICGPR.2014.6970415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our objective is the development of a prognosis system that predicts the soil-dependent GPR performance in landmine and improvised explosive device (IED) contaminated areas. One of the soil properties influencing sensing depth and image resolution of GPR is intrinsic attenuation. We investigated the frequency-dependent electromagnetic properties of a broad range of soil samples. In order to derive the complex dielectric permittivity between 1 MHz and 10 GHz, we applied the coaxial transmission line (CTL) method using two coaxial cells. A model was fitted to the data consisting of a combination of one Debye and one Cole-Cole type relaxation and a constant low-frequency conductivity term. We show that relaxation mechanisms play a crucial role in most natural soils. Attenuation cannot be described by dc-conductivity alone, especially for high-frequency applications. Therefore, a simple conductivity-attenuation relation without relaxations can highly underestimate GPR performance. As an alternative to the CTL technique, we propose to use time-domain reflectometry (TDR) for a quick prediction of high-frequency effective conductivity and GPR performance in the field.\",\"PeriodicalId\":212710,\"journal\":{\"name\":\"Proceedings of the 15th International Conference on Ground Penetrating Radar\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th International Conference on Ground Penetrating Radar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICGPR.2014.6970415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th International Conference on Ground Penetrating Radar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGPR.2014.6970415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们的目标是开发一个预测系统,预测地雷和简易爆炸装置(IED)污染地区土壤依赖的探地雷达性能。影响探地雷达探测深度和图像分辨率的土壤特性之一是固有衰减。我们研究了各种土壤样品的频率相关电磁特性。为了得到1 MHz ~ 10 GHz之间的复介电常数,我们采用了两个同轴单元的同轴传输线(CTL)方法。将一个Debye型松弛和一个Cole-Cole型松弛以及一个恒定的低频电导率项的组合数据拟合为一个模型。我们发现松弛机制在大多数天然土壤中起着至关重要的作用。衰减不能仅用直流电导率来描述,特别是在高频应用中。因此,没有松弛的简单电导衰减关系可能会严重低估探地雷达的性能。作为CTL技术的替代方案,我们建议使用时域反射法(TDR)来快速预测现场的高频有效电导率和探地雷达性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency-dependent attenuation analysis in soils using broadband dielectric spectroscopy and TDR
Our objective is the development of a prognosis system that predicts the soil-dependent GPR performance in landmine and improvised explosive device (IED) contaminated areas. One of the soil properties influencing sensing depth and image resolution of GPR is intrinsic attenuation. We investigated the frequency-dependent electromagnetic properties of a broad range of soil samples. In order to derive the complex dielectric permittivity between 1 MHz and 10 GHz, we applied the coaxial transmission line (CTL) method using two coaxial cells. A model was fitted to the data consisting of a combination of one Debye and one Cole-Cole type relaxation and a constant low-frequency conductivity term. We show that relaxation mechanisms play a crucial role in most natural soils. Attenuation cannot be described by dc-conductivity alone, especially for high-frequency applications. Therefore, a simple conductivity-attenuation relation without relaxations can highly underestimate GPR performance. As an alternative to the CTL technique, we propose to use time-domain reflectometry (TDR) for a quick prediction of high-frequency effective conductivity and GPR performance in the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信