{"title":"利用虚拟样机工具对一类径向柔性主轴的切削参数进行了优化设计","authors":"G. Berselli, M. Pellicciari, G. Bigi, R. Razzoli","doi":"10.1504/IJCAET.2019.098138","DOIUrl":null,"url":null,"abstract":"Robotic deburring (RD) still requires long and delicate physical tests to tune the process-parameters, thus drastically reducing the robotic cell productivity. Henceforth, engineering methods and tools are needed to optimise the RD application within a virtual environment, replicating the real behaviour of the robot tooling under different process conditions, namely unpredictable variety of burr size/shape and limited accuracy of the robot motions. To this purpose, the spindle compliance, which plays a fundamental role, is unfortunately not evaluated by state-of-the-art simulation tools. The present paper proposes a virtual prototype (VP) of a radially-compliant spindle, suitable to assess and optimise the deburring efficiency in different case scenarios. A multi-body model of the spindle, integrated with the process behavioural model, predicts process forces and optimal deburring parameters, delivering the contour maps of the envisaged deburring error as function of feed rate and tool compliance. An industrial case-study is provided.","PeriodicalId":346646,"journal":{"name":"Int. J. Comput. Aided Eng. Technol.","volume":"514 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design optimisation of cutting parameters for a class of radially-compliant spindles via virtual prototyping tools\",\"authors\":\"G. Berselli, M. Pellicciari, G. Bigi, R. Razzoli\",\"doi\":\"10.1504/IJCAET.2019.098138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robotic deburring (RD) still requires long and delicate physical tests to tune the process-parameters, thus drastically reducing the robotic cell productivity. Henceforth, engineering methods and tools are needed to optimise the RD application within a virtual environment, replicating the real behaviour of the robot tooling under different process conditions, namely unpredictable variety of burr size/shape and limited accuracy of the robot motions. To this purpose, the spindle compliance, which plays a fundamental role, is unfortunately not evaluated by state-of-the-art simulation tools. The present paper proposes a virtual prototype (VP) of a radially-compliant spindle, suitable to assess and optimise the deburring efficiency in different case scenarios. A multi-body model of the spindle, integrated with the process behavioural model, predicts process forces and optimal deburring parameters, delivering the contour maps of the envisaged deburring error as function of feed rate and tool compliance. An industrial case-study is provided.\",\"PeriodicalId\":346646,\"journal\":{\"name\":\"Int. J. Comput. Aided Eng. Technol.\",\"volume\":\"514 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Aided Eng. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCAET.2019.098138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Aided Eng. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCAET.2019.098138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design optimisation of cutting parameters for a class of radially-compliant spindles via virtual prototyping tools
Robotic deburring (RD) still requires long and delicate physical tests to tune the process-parameters, thus drastically reducing the robotic cell productivity. Henceforth, engineering methods and tools are needed to optimise the RD application within a virtual environment, replicating the real behaviour of the robot tooling under different process conditions, namely unpredictable variety of burr size/shape and limited accuracy of the robot motions. To this purpose, the spindle compliance, which plays a fundamental role, is unfortunately not evaluated by state-of-the-art simulation tools. The present paper proposes a virtual prototype (VP) of a radially-compliant spindle, suitable to assess and optimise the deburring efficiency in different case scenarios. A multi-body model of the spindle, integrated with the process behavioural model, predicts process forces and optimal deburring parameters, delivering the contour maps of the envisaged deburring error as function of feed rate and tool compliance. An industrial case-study is provided.