在偶拟阵上

W. T. Tutte
{"title":"在偶拟阵上","authors":"W. T. Tutte","doi":"10.6028/JRES.071B.028","DOIUrl":null,"url":null,"abstract":"It is s hown in [1] I that e very graphic matroid is regular ([1], 5.63) and even ([IJ, 9.23). Moreover a regular matroid c an be charac terized as a binary one which has no minor of either of the types called BI and BII. ([11. 7.51). In the prese nt paper we es tablish a converse theore m: any ever: matroid whic h has no minor of Type BI mu st be graphi c. 1. Let Y be an atom of a binary matroid M, and suppose it to have the following properties. (i) Y is brid~e-separable (ii) If 8 is any bridge of Y in M , then M X (B U Y) is graphic. Then M is g raphic.","PeriodicalId":408709,"journal":{"name":"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1967-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"On even matroids\",\"authors\":\"W. T. Tutte\",\"doi\":\"10.6028/JRES.071B.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is s hown in [1] I that e very graphic matroid is regular ([1], 5.63) and even ([IJ, 9.23). Moreover a regular matroid c an be charac terized as a binary one which has no minor of either of the types called BI and BII. ([11. 7.51). In the prese nt paper we es tablish a converse theore m: any ever: matroid whic h has no minor of Type BI mu st be graphi c. 1. Let Y be an atom of a binary matroid M, and suppose it to have the following properties. (i) Y is brid~e-separable (ii) If 8 is any bridge of Y in M , then M X (B U Y) is graphic. Then M is g raphic.\",\"PeriodicalId\":408709,\"journal\":{\"name\":\"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1967-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/JRES.071B.028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.071B.028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在[1]1中表明,非常图形化的矩阵是正则的([1],5.63)和偶的([IJ, 9.23)。此外,正则矩阵c可以被表征为一个二元矩阵,它没有BI和BII这两种类型的子矩阵。([11。7.51)。本文建立了一个逆定理:任何不含BI型的任意矩阵都是图1。设Y是二元矩阵M的一个原子,并假定它具有下列性质。(i) Y是桥~e可分的(ii)如果8是M中Y的任意桥,则M X (B U Y)是图形的。那么M是图形的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On even matroids
It is s hown in [1] I that e very graphic matroid is regular ([1], 5.63) and even ([IJ, 9.23). Moreover a regular matroid c an be charac terized as a binary one which has no minor of either of the types called BI and BII. ([11. 7.51). In the prese nt paper we es tablish a converse theore m: any ever: matroid whic h has no minor of Type BI mu st be graphi c. 1. Let Y be an atom of a binary matroid M, and suppose it to have the following properties. (i) Y is brid~e-separable (ii) If 8 is any bridge of Y in M , then M X (B U Y) is graphic. Then M is g raphic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信