Brendan David-John, Kevin R. B. Butler, Eakta Jain
{"title":"只为你的眼睛保护隐私的眼动追踪数据集","authors":"Brendan David-John, Kevin R. B. Butler, Eakta Jain","doi":"10.1145/3517031.3529618","DOIUrl":null,"url":null,"abstract":"Eye-tracking is a critical source of information for understanding human behavior and developing future mixed-reality technology. Eye-tracking enables applications that classify user activity or predict user intent. However, eye-tracking datasets collected during common virtual reality tasks have also been shown to enable unique user identification, which creates a privacy risk. In this paper, we focus on the problem of user re-identification from eye-tracking features. We adapt standardized privacy definitions of k-anonymity and plausible deniability to protect datasets of eye-tracking features, and evaluate performance against re-identification by a standard biometric identification model on seven VR datasets. Our results demonstrate that re-identification goes down to chance levels for the privatized datasets, even as utility is preserved to levels higher than 72% accuracy in document type classification.","PeriodicalId":339393,"journal":{"name":"2022 Symposium on Eye Tracking Research and Applications","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"For Your Eyes Only: Privacy-preserving eye-tracking datasets\",\"authors\":\"Brendan David-John, Kevin R. B. Butler, Eakta Jain\",\"doi\":\"10.1145/3517031.3529618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eye-tracking is a critical source of information for understanding human behavior and developing future mixed-reality technology. Eye-tracking enables applications that classify user activity or predict user intent. However, eye-tracking datasets collected during common virtual reality tasks have also been shown to enable unique user identification, which creates a privacy risk. In this paper, we focus on the problem of user re-identification from eye-tracking features. We adapt standardized privacy definitions of k-anonymity and plausible deniability to protect datasets of eye-tracking features, and evaluate performance against re-identification by a standard biometric identification model on seven VR datasets. Our results demonstrate that re-identification goes down to chance levels for the privatized datasets, even as utility is preserved to levels higher than 72% accuracy in document type classification.\",\"PeriodicalId\":339393,\"journal\":{\"name\":\"2022 Symposium on Eye Tracking Research and Applications\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Symposium on Eye Tracking Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3517031.3529618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Symposium on Eye Tracking Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3517031.3529618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
For Your Eyes Only: Privacy-preserving eye-tracking datasets
Eye-tracking is a critical source of information for understanding human behavior and developing future mixed-reality technology. Eye-tracking enables applications that classify user activity or predict user intent. However, eye-tracking datasets collected during common virtual reality tasks have also been shown to enable unique user identification, which creates a privacy risk. In this paper, we focus on the problem of user re-identification from eye-tracking features. We adapt standardized privacy definitions of k-anonymity and plausible deniability to protect datasets of eye-tracking features, and evaluate performance against re-identification by a standard biometric identification model on seven VR datasets. Our results demonstrate that re-identification goes down to chance levels for the privatized datasets, even as utility is preserved to levels higher than 72% accuracy in document type classification.