网络搜索结果摘要:标题选择算法和用户满意度

T. Kanungo, Nadia Ghamrawi, Ki Yuen Kim, Lawrence Wai
{"title":"网络搜索结果摘要:标题选择算法和用户满意度","authors":"T. Kanungo, Nadia Ghamrawi, Ki Yuen Kim, Lawrence Wai","doi":"10.1145/1645953.1646177","DOIUrl":null,"url":null,"abstract":"Eye tracking experiments have shown that titles of Web search results play a crucial role in guiding a user's search process. We present a machine-learned algorithm that trains a boosted tree to pick the most relevant title for a Web search result. We compare two modeling approaches: i) using absolute editorial judgments and ii) using pairwise preference judgments. We find that the pairwise modeling approach gives better results in terms of three offline metrics. We present results of our models in four regions. We also describe a hybrid user satisfaction evaluation process -- search success -- that combines page relevance and user click behavior, and show that our machine-learned algorithm improves in search success.","PeriodicalId":286251,"journal":{"name":"Proceedings of the 18th ACM conference on Information and knowledge management","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Web search result summarization: title selection algorithms and user satisfaction\",\"authors\":\"T. Kanungo, Nadia Ghamrawi, Ki Yuen Kim, Lawrence Wai\",\"doi\":\"10.1145/1645953.1646177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eye tracking experiments have shown that titles of Web search results play a crucial role in guiding a user's search process. We present a machine-learned algorithm that trains a boosted tree to pick the most relevant title for a Web search result. We compare two modeling approaches: i) using absolute editorial judgments and ii) using pairwise preference judgments. We find that the pairwise modeling approach gives better results in terms of three offline metrics. We present results of our models in four regions. We also describe a hybrid user satisfaction evaluation process -- search success -- that combines page relevance and user click behavior, and show that our machine-learned algorithm improves in search success.\",\"PeriodicalId\":286251,\"journal\":{\"name\":\"Proceedings of the 18th ACM conference on Information and knowledge management\",\"volume\":\"2015 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th ACM conference on Information and knowledge management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1645953.1646177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1645953.1646177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

眼动追踪实验表明,网络搜索结果的标题在引导用户搜索过程中起着至关重要的作用。我们提出了一种机器学习算法,该算法训练一个增强树来为网络搜索结果挑选最相关的标题。我们比较了两种建模方法:i)使用绝对编辑判断和ii)使用成对偏好判断。我们发现两两建模方法在三个离线指标方面给出了更好的结果。我们给出了我们的模型在四个地区的结果。我们还描述了一个混合用户满意度评估过程——搜索成功——它结合了页面相关性和用户点击行为,并表明我们的机器学习算法提高了搜索成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Web search result summarization: title selection algorithms and user satisfaction
Eye tracking experiments have shown that titles of Web search results play a crucial role in guiding a user's search process. We present a machine-learned algorithm that trains a boosted tree to pick the most relevant title for a Web search result. We compare two modeling approaches: i) using absolute editorial judgments and ii) using pairwise preference judgments. We find that the pairwise modeling approach gives better results in terms of three offline metrics. We present results of our models in four regions. We also describe a hybrid user satisfaction evaluation process -- search success -- that combines page relevance and user click behavior, and show that our machine-learned algorithm improves in search success.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信