K. J. Gurubel, E. Sánchez, S. Carlos-Hernandez, Fernando Ornelas
{"title":"厌氧过程的粒子群混合智能逆最优控制","authors":"K. J. Gurubel, E. Sánchez, S. Carlos-Hernandez, Fernando Ornelas","doi":"10.1109/CEC.2013.6557660","DOIUrl":null,"url":null,"abstract":"This paper proposes a hybrid intelligent inverse optimal control for trajectory tracking based on a neural observer and a fuzzy supervisor for an anaerobic digestion process, in order to maximize methane production. A nonlinear discrete-time recurrent high order neural observer (RHONO) is used to estimate biomass concentration and substrate degradation in a continuous stirred tank reactor. The control law calculates dilution rate and bicarbonate supply, and a Takagi-Sugeno supervisor based on the estimation of biomass, selects and applies the most adequate control action, allowing a smooth switching between open loop and closed loop. A Particle Swarm Optimization (PSO) algorithm is employed to determine the matrix P for inverse optimal control in order to improve tracking results. The applicability of the proposed scheme is illustrated via simulations.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"PSO hybrid intelligent inverse optimal control for an anaerobic process\",\"authors\":\"K. J. Gurubel, E. Sánchez, S. Carlos-Hernandez, Fernando Ornelas\",\"doi\":\"10.1109/CEC.2013.6557660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a hybrid intelligent inverse optimal control for trajectory tracking based on a neural observer and a fuzzy supervisor for an anaerobic digestion process, in order to maximize methane production. A nonlinear discrete-time recurrent high order neural observer (RHONO) is used to estimate biomass concentration and substrate degradation in a continuous stirred tank reactor. The control law calculates dilution rate and bicarbonate supply, and a Takagi-Sugeno supervisor based on the estimation of biomass, selects and applies the most adequate control action, allowing a smooth switching between open loop and closed loop. A Particle Swarm Optimization (PSO) algorithm is employed to determine the matrix P for inverse optimal control in order to improve tracking results. The applicability of the proposed scheme is illustrated via simulations.\",\"PeriodicalId\":211988,\"journal\":{\"name\":\"2013 IEEE Congress on Evolutionary Computation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2013.6557660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PSO hybrid intelligent inverse optimal control for an anaerobic process
This paper proposes a hybrid intelligent inverse optimal control for trajectory tracking based on a neural observer and a fuzzy supervisor for an anaerobic digestion process, in order to maximize methane production. A nonlinear discrete-time recurrent high order neural observer (RHONO) is used to estimate biomass concentration and substrate degradation in a continuous stirred tank reactor. The control law calculates dilution rate and bicarbonate supply, and a Takagi-Sugeno supervisor based on the estimation of biomass, selects and applies the most adequate control action, allowing a smooth switching between open loop and closed loop. A Particle Swarm Optimization (PSO) algorithm is employed to determine the matrix P for inverse optimal control in order to improve tracking results. The applicability of the proposed scheme is illustrated via simulations.