多班不平衡问题的混合抽样:学生成绩预测的个案研究

Wanthanee Prachuabsupakij, N. Soonthornphisaj
{"title":"多班不平衡问题的混合抽样:学生成绩预测的个案研究","authors":"Wanthanee Prachuabsupakij, N. Soonthornphisaj","doi":"10.1109/ICACSIS.2014.7065824","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to propose a method namely CLUSS - CLUstering and SMOTE Sampling that can improve the prediction performance on multiclass imbalanced problem with students' performance data. Firstly, the clustering approach is used to create a new subset from all majority classes. The new subsets consists of the groups of majority classes instances which have different characteristics. Secondly, oversampling technique is applied to generate the new synthetic minority class instances. Then, CLUSS constructs the new training set by combining all minority class instances and the majority class instances in each subset. Finally, for each training set decision tree is used as a classifier to predict the classes via majority vote. The experimental results show that CLUSS achieved high performance on both majority and minority classes.","PeriodicalId":443250,"journal":{"name":"2014 International Conference on Advanced Computer Science and Information System","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hybrid sampling for multiclass imbalanced problem: Case study of students' performance prediction\",\"authors\":\"Wanthanee Prachuabsupakij, N. Soonthornphisaj\",\"doi\":\"10.1109/ICACSIS.2014.7065824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to propose a method namely CLUSS - CLUstering and SMOTE Sampling that can improve the prediction performance on multiclass imbalanced problem with students' performance data. Firstly, the clustering approach is used to create a new subset from all majority classes. The new subsets consists of the groups of majority classes instances which have different characteristics. Secondly, oversampling technique is applied to generate the new synthetic minority class instances. Then, CLUSS constructs the new training set by combining all minority class instances and the majority class instances in each subset. Finally, for each training set decision tree is used as a classifier to predict the classes via majority vote. The experimental results show that CLUSS achieved high performance on both majority and minority classes.\",\"PeriodicalId\":443250,\"journal\":{\"name\":\"2014 International Conference on Advanced Computer Science and Information System\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Advanced Computer Science and Information System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACSIS.2014.7065824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Advanced Computer Science and Information System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2014.7065824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的目的是提出一种基于CLUSS -聚类和SMOTE采样的方法来提高学生成绩数据对多班不平衡问题的预测性能。首先,使用聚类方法从所有多数类中创建一个新的子集。新的子集由具有不同特征的多数类实例组组成。其次,采用过采样技术生成新的合成少数类实例;然后,CLUSS通过组合每个子集中的所有少数类实例和多数类实例来构建新的训练集。最后,对每个训练集使用决策树作为分类器,通过多数投票来预测类别。实验结果表明,CLUSS在多数类和少数类上都取得了良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid sampling for multiclass imbalanced problem: Case study of students' performance prediction
The aim of this paper is to propose a method namely CLUSS - CLUstering and SMOTE Sampling that can improve the prediction performance on multiclass imbalanced problem with students' performance data. Firstly, the clustering approach is used to create a new subset from all majority classes. The new subsets consists of the groups of majority classes instances which have different characteristics. Secondly, oversampling technique is applied to generate the new synthetic minority class instances. Then, CLUSS constructs the new training set by combining all minority class instances and the majority class instances in each subset. Finally, for each training set decision tree is used as a classifier to predict the classes via majority vote. The experimental results show that CLUSS achieved high performance on both majority and minority classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信