具有模糊和不同大小文本的场景视频文本检测

M. Mehta, S. A. Pote
{"title":"具有模糊和不同大小文本的场景视频文本检测","authors":"M. Mehta, S. A. Pote","doi":"10.1109/PUNECON.2018.8745375","DOIUrl":null,"url":null,"abstract":"Text in videos needs to be detected correctly as it contains important information related to natural scene in videos. Text detection is useful for automatic number plate recognition, street boards reading, Optical Character Recognition (OCR), automatic document scanning and to help blind or visually impaired people. The existing scene text detection techniques are unable to detect text accurately from the videos having low contrast, complex background or excessively small fonts. Hence, we propose a new text detection technique that enhances accuracy of detecting text and reduceses average processing time. Our text detection technique incorporates Edge-enhanced Maximally Stable Extremal Regions (eMSER) method to preserve shape of characters and modified fuzzy C-means clustering to converge faster. In this paper, we provide an experimental analysis of our improved text detection technique. To show the effectiveness of our proposed text detection technique, we have performed experiments considering videos having text of different sizes as well as considering blur videos. The experimental results show that an improved text detection technique outperforms an eMSER based text detection technique.","PeriodicalId":166677,"journal":{"name":"2018 IEEE Punecon","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Text Detection from Scene Videos having Blurriness and Text of Different Sizes\",\"authors\":\"M. Mehta, S. A. Pote\",\"doi\":\"10.1109/PUNECON.2018.8745375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text in videos needs to be detected correctly as it contains important information related to natural scene in videos. Text detection is useful for automatic number plate recognition, street boards reading, Optical Character Recognition (OCR), automatic document scanning and to help blind or visually impaired people. The existing scene text detection techniques are unable to detect text accurately from the videos having low contrast, complex background or excessively small fonts. Hence, we propose a new text detection technique that enhances accuracy of detecting text and reduceses average processing time. Our text detection technique incorporates Edge-enhanced Maximally Stable Extremal Regions (eMSER) method to preserve shape of characters and modified fuzzy C-means clustering to converge faster. In this paper, we provide an experimental analysis of our improved text detection technique. To show the effectiveness of our proposed text detection technique, we have performed experiments considering videos having text of different sizes as well as considering blur videos. The experimental results show that an improved text detection technique outperforms an eMSER based text detection technique.\",\"PeriodicalId\":166677,\"journal\":{\"name\":\"2018 IEEE Punecon\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Punecon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PUNECON.2018.8745375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Punecon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PUNECON.2018.8745375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

视频中的文本包含了与视频中自然场景相关的重要信息,需要正确检测。文本检测可用于自动识别车牌号码、识读路牌、光学字符识别(OCR)、自动扫描文件,并可帮助盲人或视障人士。现有的场景文本检测技术无法从对比度低、背景复杂或字体过小的视频中准确检测文本。因此,我们提出了一种新的文本检测技术,提高了文本检测的准确性,减少了平均处理时间。我们的文本检测技术结合了边缘增强的最大稳定极值区域(eMSER)方法来保持字符的形状,并改进了模糊c均值聚类来加快收敛速度。本文对改进后的文本检测技术进行了实验分析。为了证明我们提出的文本检测技术的有效性,我们进行了考虑具有不同大小文本的视频以及考虑模糊视频的实验。实验结果表明,改进后的文本检测技术优于基于eMSER的文本检测技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text Detection from Scene Videos having Blurriness and Text of Different Sizes
Text in videos needs to be detected correctly as it contains important information related to natural scene in videos. Text detection is useful for automatic number plate recognition, street boards reading, Optical Character Recognition (OCR), automatic document scanning and to help blind or visually impaired people. The existing scene text detection techniques are unable to detect text accurately from the videos having low contrast, complex background or excessively small fonts. Hence, we propose a new text detection technique that enhances accuracy of detecting text and reduceses average processing time. Our text detection technique incorporates Edge-enhanced Maximally Stable Extremal Regions (eMSER) method to preserve shape of characters and modified fuzzy C-means clustering to converge faster. In this paper, we provide an experimental analysis of our improved text detection technique. To show the effectiveness of our proposed text detection technique, we have performed experiments considering videos having text of different sizes as well as considering blur videos. The experimental results show that an improved text detection technique outperforms an eMSER based text detection technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信