算子代数的最小边界

Raphael Clouatre, I. Thompson
{"title":"算子代数的最小边界","authors":"Raphael Clouatre, I. Thompson","doi":"10.1090/btran/154","DOIUrl":null,"url":null,"abstract":"We study boundaries for unital operator algebras. These are sets of irreducible \n\n \n ∗\n *\n \n\n-representations that completely capture the spatial norm attainment for a given subalgebra. Classically, the Choquet boundary is the minimal boundary of a function algebra and it coincides with the collection of peak points. We investigate the question of minimality for the non-commutative counterpart of the Choquet boundary and show that minimality is equivalent to what we call the Bishop property. Not every operator algebra has the Bishop property, but we exhibit classes of examples that do. Throughout our analysis, we exploit various non-commutative notions of peak points for an operator algebra. When specialized to the setting of \n\n \n \n \n C\n \n ∗\n \n \\mathrm {C}^*\n \n\n-algebras, our techniques allow us to provide a new proof of a recent characterization of those \n\n \n \n \n C\n \n ∗\n \n \\mathrm {C}^*\n \n\n-algebras admitting only finite-dimensional irreducible representations.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"854 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Minimal boundaries for operator algebras\",\"authors\":\"Raphael Clouatre, I. Thompson\",\"doi\":\"10.1090/btran/154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study boundaries for unital operator algebras. These are sets of irreducible \\n\\n \\n ∗\\n *\\n \\n\\n-representations that completely capture the spatial norm attainment for a given subalgebra. Classically, the Choquet boundary is the minimal boundary of a function algebra and it coincides with the collection of peak points. We investigate the question of minimality for the non-commutative counterpart of the Choquet boundary and show that minimality is equivalent to what we call the Bishop property. Not every operator algebra has the Bishop property, but we exhibit classes of examples that do. Throughout our analysis, we exploit various non-commutative notions of peak points for an operator algebra. When specialized to the setting of \\n\\n \\n \\n \\n C\\n \\n ∗\\n \\n \\\\mathrm {C}^*\\n \\n\\n-algebras, our techniques allow us to provide a new proof of a recent characterization of those \\n\\n \\n \\n \\n C\\n \\n ∗\\n \\n \\\\mathrm {C}^*\\n \\n\\n-algebras admitting only finite-dimensional irreducible representations.\",\"PeriodicalId\":377306,\"journal\":{\"name\":\"Transactions of the American Mathematical Society, Series B\",\"volume\":\"854 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/btran/154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们研究了一元算子代数的边界。这些是一组不可约的* *表示,它们完全捕获了给定子代数的空间范数实现。经典的Choquet边界是函数代数的最小边界,它与峰值点的集合重合。我们研究了Choquet边界的非交换对应物的极小性问题,并证明极小性等价于我们所说的Bishop性质。并不是每一个运算符代数都有Bishop性质,但是我们展示了一些这样的例子。在整个分析过程中,我们利用了算子代数的峰值点的各种非交换概念。当专门化到C∗\mathrm {C}^* -代数的集合时,我们的技术允许我们对那些只允许有限维不可约表示的C∗\mathrm {C}^* -代数的最新表征提供一个新的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal boundaries for operator algebras
We study boundaries for unital operator algebras. These are sets of irreducible ∗ * -representations that completely capture the spatial norm attainment for a given subalgebra. Classically, the Choquet boundary is the minimal boundary of a function algebra and it coincides with the collection of peak points. We investigate the question of minimality for the non-commutative counterpart of the Choquet boundary and show that minimality is equivalent to what we call the Bishop property. Not every operator algebra has the Bishop property, but we exhibit classes of examples that do. Throughout our analysis, we exploit various non-commutative notions of peak points for an operator algebra. When specialized to the setting of C ∗ \mathrm {C}^* -algebras, our techniques allow us to provide a new proof of a recent characterization of those C ∗ \mathrm {C}^* -algebras admitting only finite-dimensional irreducible representations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信