在制造车间部署预测分析的经验教训

Alex Romriell, R. Niculescu, David Kessler, Tracey Kroll
{"title":"在制造车间部署预测分析的经验教训","authors":"Alex Romriell, R. Niculescu, David Kessler, Tracey Kroll","doi":"10.1109/RAMS48030.2020.9153728","DOIUrl":null,"url":null,"abstract":"Machine Learning techniques have been successfully deployed to provide advanced warning that certain errors are going to occur on a set of automated fiber placement (AFP) machines manufacturing high tech plane parts. This allows proactive actions to be taken to prevent unnecessary downtime and increase machine throughput.","PeriodicalId":360096,"journal":{"name":"2020 Annual Reliability and Maintainability Symposium (RAMS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lessons from Deploying Predictive Analytics on Manufacturing Shop Floor\",\"authors\":\"Alex Romriell, R. Niculescu, David Kessler, Tracey Kroll\",\"doi\":\"10.1109/RAMS48030.2020.9153728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine Learning techniques have been successfully deployed to provide advanced warning that certain errors are going to occur on a set of automated fiber placement (AFP) machines manufacturing high tech plane parts. This allows proactive actions to be taken to prevent unnecessary downtime and increase machine throughput.\",\"PeriodicalId\":360096,\"journal\":{\"name\":\"2020 Annual Reliability and Maintainability Symposium (RAMS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Annual Reliability and Maintainability Symposium (RAMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAMS48030.2020.9153728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Annual Reliability and Maintainability Symposium (RAMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAMS48030.2020.9153728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习技术已经成功地应用于制造高科技飞机零件的一组自动纤维放置(AFP)机器上,以提供某些错误即将发生的提前警告。这允许采取主动行动,以防止不必要的停机时间和提高机器吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lessons from Deploying Predictive Analytics on Manufacturing Shop Floor
Machine Learning techniques have been successfully deployed to provide advanced warning that certain errors are going to occur on a set of automated fiber placement (AFP) machines manufacturing high tech plane parts. This allows proactive actions to be taken to prevent unnecessary downtime and increase machine throughput.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信