故障检测系统中的演化模糊模型

D. Dovžan
{"title":"故障检测系统中的演化模糊模型","authors":"D. Dovžan","doi":"10.1109/EAIS.2017.7954828","DOIUrl":null,"url":null,"abstract":"Evolving methods for on-line learning of nonlinear models can play an important role in future monitoring and fault detection systems. The ability to model nonlinear relationships between the measured variables and to adapt the model to changing variable relations can decrease the number of false alarms and ensure a more robust and stable monitoring system. In this paper an example of the waste water treatment process monitoring system based on evolving fuzzy model is presented.","PeriodicalId":286312,"journal":{"name":"2017 Evolving and Adaptive Intelligent Systems (EAIS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evolving fuzzy model in fault detection system\",\"authors\":\"D. Dovžan\",\"doi\":\"10.1109/EAIS.2017.7954828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evolving methods for on-line learning of nonlinear models can play an important role in future monitoring and fault detection systems. The ability to model nonlinear relationships between the measured variables and to adapt the model to changing variable relations can decrease the number of false alarms and ensure a more robust and stable monitoring system. In this paper an example of the waste water treatment process monitoring system based on evolving fuzzy model is presented.\",\"PeriodicalId\":286312,\"journal\":{\"name\":\"2017 Evolving and Adaptive Intelligent Systems (EAIS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Evolving and Adaptive Intelligent Systems (EAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EAIS.2017.7954828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Evolving and Adaptive Intelligent Systems (EAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIS.2017.7954828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

非线性模型在线学习的演化方法将在未来的监测和故障检测系统中发挥重要作用。对被测变量之间的非线性关系进行建模,并使模型适应变量关系的变化,可以减少误报的数量,确保监测系统更加鲁棒和稳定。本文介绍了一个基于演化模糊模型的污水处理过程监测系统的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolving fuzzy model in fault detection system
Evolving methods for on-line learning of nonlinear models can play an important role in future monitoring and fault detection systems. The ability to model nonlinear relationships between the measured variables and to adapt the model to changing variable relations can decrease the number of false alarms and ensure a more robust and stable monitoring system. In this paper an example of the waste water treatment process monitoring system based on evolving fuzzy model is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信