具有非凸惩罚的动态图拓扑学习

Reza Mirzaeifard, Vinay Chakravarthi Gogineni, Naveen K. D. Venkategowda, Stefan Werner
{"title":"具有非凸惩罚的动态图拓扑学习","authors":"Reza Mirzaeifard, Vinay Chakravarthi Gogineni, Naveen K. D. Venkategowda, Stefan Werner","doi":"10.23919/eusipco55093.2022.9909609","DOIUrl":null,"url":null,"abstract":"This paper presents a majorization-minimization-based framework for learning time-varying graphs from spatial-temporal measurements with non-convex penalties. The proposed approach infers time-varying graphs by using the log-likelihood function in conjunction with two non-convex regularizers. Using the log-likelihood function under a total positivity constraint, we can construct the Laplacian matrix from the off-diagonal elements of the precision matrix. Furthermore, we employ non-convex regularizer functions to constrain the changes in graph topology and associated weight evolution to be sparse. The experimental results demonstrate that our proposed method outperforms the state-of-the-art methods in sparse and non-sparse situations.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dynamic Graph Topology Learning with Non-Convex Penalties\",\"authors\":\"Reza Mirzaeifard, Vinay Chakravarthi Gogineni, Naveen K. D. Venkategowda, Stefan Werner\",\"doi\":\"10.23919/eusipco55093.2022.9909609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a majorization-minimization-based framework for learning time-varying graphs from spatial-temporal measurements with non-convex penalties. The proposed approach infers time-varying graphs by using the log-likelihood function in conjunction with two non-convex regularizers. Using the log-likelihood function under a total positivity constraint, we can construct the Laplacian matrix from the off-diagonal elements of the precision matrix. Furthermore, we employ non-convex regularizer functions to constrain the changes in graph topology and associated weight evolution to be sparse. The experimental results demonstrate that our proposed method outperforms the state-of-the-art methods in sparse and non-sparse situations.\",\"PeriodicalId\":231263,\"journal\":{\"name\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eusipco55093.2022.9909609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于最大化最小化的框架,用于从具有非凸惩罚的时空测量中学习时变图。该方法利用对数似然函数和两个非凸正则化器来推断时变图。利用全正约束下的对数似然函数,我们可以从精度矩阵的非对角元素构造拉普拉斯矩阵。此外,我们使用非凸正则化函数来约束图拓扑的变化和相关权演化为稀疏。实验结果表明,本文提出的方法在稀疏和非稀疏情况下都优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Graph Topology Learning with Non-Convex Penalties
This paper presents a majorization-minimization-based framework for learning time-varying graphs from spatial-temporal measurements with non-convex penalties. The proposed approach infers time-varying graphs by using the log-likelihood function in conjunction with two non-convex regularizers. Using the log-likelihood function under a total positivity constraint, we can construct the Laplacian matrix from the off-diagonal elements of the precision matrix. Furthermore, we employ non-convex regularizer functions to constrain the changes in graph topology and associated weight evolution to be sparse. The experimental results demonstrate that our proposed method outperforms the state-of-the-art methods in sparse and non-sparse situations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信