Steiner双目标最短路径问题

IF 2.6 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Hamza Ben Ticha , Nabil Absi , Dominique Feillet , Alain Quilliot
{"title":"Steiner双目标最短路径问题","authors":"Hamza Ben Ticha ,&nbsp;Nabil Absi ,&nbsp;Dominique Feillet ,&nbsp;Alain Quilliot","doi":"10.1016/j.ejco.2021.100004","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce the Steiner Bi-objective Shortest Path Problem. This problem is defined on a directed graph <span><math><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>A</mi><mo>)</mo><mo>,</mo></mrow></math></span> with a subset <span><math><mrow><mi>T</mi><mo>⊂</mo><mi>V</mi></mrow></math></span> of terminals. Arcs are labeled with travel time and cost. The goal is to find a complete set of efficient paths between every pair of nodes in <span><math><mi>T</mi></math></span>. The motivation behind this problem stems from data preprocessing for vehicle routing problems. We propose a solution method based on a labeling approach with a multi-objective A* search strategy guiding the search towards the terminals. Computational results based on instances generated from real road networks show the efficiency of the proposed algorithm compared to state-of-art approaches.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"9 ","pages":"Article 100004"},"PeriodicalIF":2.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ejco.2021.100004","citationCount":"2","resultStr":"{\"title\":\"The Steiner bi-objective shortest path problem\",\"authors\":\"Hamza Ben Ticha ,&nbsp;Nabil Absi ,&nbsp;Dominique Feillet ,&nbsp;Alain Quilliot\",\"doi\":\"10.1016/j.ejco.2021.100004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we introduce the Steiner Bi-objective Shortest Path Problem. This problem is defined on a directed graph <span><math><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>A</mi><mo>)</mo><mo>,</mo></mrow></math></span> with a subset <span><math><mrow><mi>T</mi><mo>⊂</mo><mi>V</mi></mrow></math></span> of terminals. Arcs are labeled with travel time and cost. The goal is to find a complete set of efficient paths between every pair of nodes in <span><math><mi>T</mi></math></span>. The motivation behind this problem stems from data preprocessing for vehicle routing problems. We propose a solution method based on a labeling approach with a multi-objective A* search strategy guiding the search towards the terminals. Computational results based on instances generated from real road networks show the efficiency of the proposed algorithm compared to state-of-art approaches.</p></div>\",\"PeriodicalId\":51880,\"journal\":{\"name\":\"EURO Journal on Computational Optimization\",\"volume\":\"9 \",\"pages\":\"Article 100004\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ejco.2021.100004\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Computational Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2192440621000010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440621000010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 2

摘要

本文引入了Steiner双目标最短路径问题。这个问题定义在一个有向图G=(V, a)上,它有一个子集T∧V的端点。弧线上标有旅行时间和费用。目标是在t中每对节点之间找到一组完整的有效路径。这个问题背后的动机源于车辆路线问题的数据预处理。我们提出了一种基于标记方法的求解方法,该方法采用多目标a *搜索策略引导搜索到终端。基于真实道路网络实例的计算结果表明,与现有方法相比,该算法具有较高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Steiner bi-objective shortest path problem

In this paper, we introduce the Steiner Bi-objective Shortest Path Problem. This problem is defined on a directed graph G=(V,A), with a subset TV of terminals. Arcs are labeled with travel time and cost. The goal is to find a complete set of efficient paths between every pair of nodes in T. The motivation behind this problem stems from data preprocessing for vehicle routing problems. We propose a solution method based on a labeling approach with a multi-objective A* search strategy guiding the search towards the terminals. Computational results based on instances generated from real road networks show the efficiency of the proposed algorithm compared to state-of-art approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EURO Journal on Computational Optimization
EURO Journal on Computational Optimization OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
3.50
自引率
0.00%
发文量
28
审稿时长
60 days
期刊介绍: The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信