{"title":"Transient Local Resolution of Flow Boiling in a Microchannel With a Streamlined Pin Fin","authors":"A. Parahovnik, Yingying Wang, Y. Peles","doi":"10.1115/ICNMM2018-7602","DOIUrl":null,"url":null,"abstract":"Flow boiling around a single streamlined pin fin in a microchannel with engineering fluid, HFE-7000, was experimentally studied. A micro heater and an array of resistance temperature detectors (RTDs) were integrated into the microchannel device to enable heating and local temperature measurements on the microchannel internal wall. Thermal behavior as a function of position, heat flux, mass flux, and pressure was investigated for single phase flow and flow boiling. High-speed visualization of the two-phase flow was used to identify pertinent flow patterns and to complement the surface temperature measurements. It was found that the nucleate boiling regime and the periodic behavior of the boiling process was strongly dependent on the system’s pressure.","PeriodicalId":137208,"journal":{"name":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","volume":"424 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICNMM2018-7602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transient Local Resolution of Flow Boiling in a Microchannel With a Streamlined Pin Fin
Flow boiling around a single streamlined pin fin in a microchannel with engineering fluid, HFE-7000, was experimentally studied. A micro heater and an array of resistance temperature detectors (RTDs) were integrated into the microchannel device to enable heating and local temperature measurements on the microchannel internal wall. Thermal behavior as a function of position, heat flux, mass flux, and pressure was investigated for single phase flow and flow boiling. High-speed visualization of the two-phase flow was used to identify pertinent flow patterns and to complement the surface temperature measurements. It was found that the nucleate boiling regime and the periodic behavior of the boiling process was strongly dependent on the system’s pressure.