单位球上有界l指标解析向量值函数主多项式的存在性

Andriy Ivanovych Bandura, V. Baksa, O. Skaskiv
{"title":"单位球上有界l指标解析向量值函数主多项式的存在性","authors":"Andriy Ivanovych Bandura, V. Baksa, O. Skaskiv","doi":"10.31861/bmj2019.02.006","DOIUrl":null,"url":null,"abstract":"In this paper, we present necessary and sufficient conditions of boundedness of L-index in joint variables for vector-functions analytic in the unit ball, where L = (l1, l2) : B → R+ is a positive continuous vector-function, B = {z ∈ C : |z| = √ |z1| + |z2| ≤ 1}. These conditions describe local behavior of homogeneous polynomials (so-called a main polynomial) with power series expansion for analytic vector-valued functions in the unit ball. These results use a bidisc exhaustion of a unit ball.","PeriodicalId":196726,"journal":{"name":"Bukovinian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON EXISTENCE OF MAIN POLYNOMIAL FOR ANALYTIC VECTOR-VALUED FUNCTIONS OF BOUNDED L-INDEX IN THE UNIT BALL\",\"authors\":\"Andriy Ivanovych Bandura, V. Baksa, O. Skaskiv\",\"doi\":\"10.31861/bmj2019.02.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present necessary and sufficient conditions of boundedness of L-index in joint variables for vector-functions analytic in the unit ball, where L = (l1, l2) : B → R+ is a positive continuous vector-function, B = {z ∈ C : |z| = √ |z1| + |z2| ≤ 1}. These conditions describe local behavior of homogeneous polynomials (so-called a main polynomial) with power series expansion for analytic vector-valued functions in the unit ball. These results use a bidisc exhaustion of a unit ball.\",\"PeriodicalId\":196726,\"journal\":{\"name\":\"Bukovinian Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bukovinian Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31861/bmj2019.02.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bukovinian Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31861/bmj2019.02.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了单位球上解析向量函数联合变量中L指标有界的充分必要条件,其中L = (l1, l2): B→R+是一个正连续向量函数,B = {z∈C: |z| =√|z1| + |z2|≤1}。这些条件描述了单位球中解析向量值函数的幂级数展开式齐次多项式(所谓主多项式)的局部性质。这些结果使用一个单位球的双盘耗尽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON EXISTENCE OF MAIN POLYNOMIAL FOR ANALYTIC VECTOR-VALUED FUNCTIONS OF BOUNDED L-INDEX IN THE UNIT BALL
In this paper, we present necessary and sufficient conditions of boundedness of L-index in joint variables for vector-functions analytic in the unit ball, where L = (l1, l2) : B → R+ is a positive continuous vector-function, B = {z ∈ C : |z| = √ |z1| + |z2| ≤ 1}. These conditions describe local behavior of homogeneous polynomials (so-called a main polynomial) with power series expansion for analytic vector-valued functions in the unit ball. These results use a bidisc exhaustion of a unit ball.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信