利用球谐对单位球进行滤波

F. Pfaff, G. Kurz, U. Hanebeck
{"title":"利用球谐对单位球进行滤波","authors":"F. Pfaff, G. Kurz, U. Hanebeck","doi":"10.1109/MFI.2017.8170417","DOIUrl":null,"url":null,"abstract":"For manifolds with topologies that strongly differ from the standard topology of Rn, using common filters created for linear domains can yield misleading results. While there is a lot of ongoing research on estimation on the unit circle, higher-dimensional problems particularly pose a challenge. One important generalization of the unit circle is the unit hypersphere. In this paper, we propose a recursive Bayesian estimator for the unit sphere S2 based on spherical harmonics for arbitrary likelihood functions and rotationally symmetric system noises. In our evaluation, the proposed filter outperforms the particle filter in a target tracking scenario on the sphere.","PeriodicalId":402371,"journal":{"name":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Filtering on the unit sphere using spherical harmonics\",\"authors\":\"F. Pfaff, G. Kurz, U. Hanebeck\",\"doi\":\"10.1109/MFI.2017.8170417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For manifolds with topologies that strongly differ from the standard topology of Rn, using common filters created for linear domains can yield misleading results. While there is a lot of ongoing research on estimation on the unit circle, higher-dimensional problems particularly pose a challenge. One important generalization of the unit circle is the unit hypersphere. In this paper, we propose a recursive Bayesian estimator for the unit sphere S2 based on spherical harmonics for arbitrary likelihood functions and rotationally symmetric system noises. In our evaluation, the proposed filter outperforms the particle filter in a target tracking scenario on the sphere.\",\"PeriodicalId\":402371,\"journal\":{\"name\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI.2017.8170417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2017.8170417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对于拓扑结构与Rn的标准拓扑结构差异很大的流形,使用为线性域创建的通用滤波器可能会产生误导的结果。在单位圆估计的研究中,高维问题尤其具有挑战性。单位圆的一个重要推广是单位超球。本文提出了一种基于任意似然函数和旋转对称系统噪声的球面谐波的单位球S2的递推贝叶斯估计。在我们的评估中,所提出的滤波器在球体上的目标跟踪场景中优于粒子滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Filtering on the unit sphere using spherical harmonics
For manifolds with topologies that strongly differ from the standard topology of Rn, using common filters created for linear domains can yield misleading results. While there is a lot of ongoing research on estimation on the unit circle, higher-dimensional problems particularly pose a challenge. One important generalization of the unit circle is the unit hypersphere. In this paper, we propose a recursive Bayesian estimator for the unit sphere S2 based on spherical harmonics for arbitrary likelihood functions and rotationally symmetric system noises. In our evaluation, the proposed filter outperforms the particle filter in a target tracking scenario on the sphere.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信