基于自适应神经模糊2型策略的动态植物控制与辨识

U. Farid, B. Khan, Z. Ullah, S. M. Ali, C. A. Mehmood, S. Farid, R. Sajjad, I. Sami, Awais Shah
{"title":"基于自适应神经模糊2型策略的动态植物控制与辨识","authors":"U. Farid, B. Khan, Z. Ullah, S. M. Ali, C. A. Mehmood, S. Farid, R. Sajjad, I. Sami, Awais Shah","doi":"10.1109/ECE.2017.8248831","DOIUrl":null,"url":null,"abstract":"The foremost objective of operative control for the unpredictable system is the design of proper and appropriate control system. The handling of insufficient information by using modern methods is of great importance. Therefore, this paper proposes the design of Type-2 fuzzy sets to deal with uncertainties in the unpredictable system in better and appropriate way as Type-2 fuzzy sets possess the capability of providing extra parameters and degree of freedom. Moreover, the construction of Adaptive Neuro-Fuzzy Type-2 (ANFT2) having a basic fuzzy set of rules is demonstrated. Gradient descent methodology is the basic method for parameter updating rules. The proposed scheme is experienced for both control and identification purpose through a commonly used dynamic system. It is observed that the projected ANFT2 structure gives better outcomes as compared to other control and identification techniques.","PeriodicalId":330104,"journal":{"name":"2017 International Conference on Energy Conservation and Efficiency (ICECE)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Control and identification of dynamic plants using adaptive neuro-fuzzy type-2 strategy\",\"authors\":\"U. Farid, B. Khan, Z. Ullah, S. M. Ali, C. A. Mehmood, S. Farid, R. Sajjad, I. Sami, Awais Shah\",\"doi\":\"10.1109/ECE.2017.8248831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The foremost objective of operative control for the unpredictable system is the design of proper and appropriate control system. The handling of insufficient information by using modern methods is of great importance. Therefore, this paper proposes the design of Type-2 fuzzy sets to deal with uncertainties in the unpredictable system in better and appropriate way as Type-2 fuzzy sets possess the capability of providing extra parameters and degree of freedom. Moreover, the construction of Adaptive Neuro-Fuzzy Type-2 (ANFT2) having a basic fuzzy set of rules is demonstrated. Gradient descent methodology is the basic method for parameter updating rules. The proposed scheme is experienced for both control and identification purpose through a commonly used dynamic system. It is observed that the projected ANFT2 structure gives better outcomes as compared to other control and identification techniques.\",\"PeriodicalId\":330104,\"journal\":{\"name\":\"2017 International Conference on Energy Conservation and Efficiency (ICECE)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Energy Conservation and Efficiency (ICECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECE.2017.8248831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Energy Conservation and Efficiency (ICECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECE.2017.8248831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

不可预测系统运行控制的首要目标是设计合适的控制系统。用现代方法处理不足的信息是非常重要的。因此,本文提出了二类模糊集的设计,由于二类模糊集具有提供额外参数和自由度的能力,可以更好、更恰当地处理不可预测系统中的不确定性。此外,还构造了具有基本模糊规则集的自适应神经模糊类型-2 (ANFT2)。梯度下降法是参数更新规则的基本方法。该方案通过一个常用的动态系统实现了控制和识别。可以观察到,与其他控制和识别技术相比,预测的ANFT2结构提供了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control and identification of dynamic plants using adaptive neuro-fuzzy type-2 strategy
The foremost objective of operative control for the unpredictable system is the design of proper and appropriate control system. The handling of insufficient information by using modern methods is of great importance. Therefore, this paper proposes the design of Type-2 fuzzy sets to deal with uncertainties in the unpredictable system in better and appropriate way as Type-2 fuzzy sets possess the capability of providing extra parameters and degree of freedom. Moreover, the construction of Adaptive Neuro-Fuzzy Type-2 (ANFT2) having a basic fuzzy set of rules is demonstrated. Gradient descent methodology is the basic method for parameter updating rules. The proposed scheme is experienced for both control and identification purpose through a commonly used dynamic system. It is observed that the projected ANFT2 structure gives better outcomes as compared to other control and identification techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信