基于奇异值分解的OFDM符号定时与载波频偏估计

Ziad Hatab, Hiroaki Takahashi, M. Gadringer, W. Bosch
{"title":"基于奇异值分解的OFDM符号定时与载波频偏估计","authors":"Ziad Hatab, Hiroaki Takahashi, M. Gadringer, W. Bosch","doi":"10.1109/CoBCom55489.2022.9880699","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new technique for estimating symbol-timing offset (STO) and carrier frequency offset (CFO) in orthogonal frequency division multiplexing (OFDM) systems. The method we present is based on detecting a training sequence at the beginning of an OFDM stream using singular value decomposition (SVD), where STO and CFO are simultaneously estimated. We show by numerical simulations that our algorithm significantly improves STO and CFO estimation compared to conventional maximum likelihood (ML) techniques at low signal-to-noise ratio (SNR) values.","PeriodicalId":131597,"journal":{"name":"2022 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OFDM Symbol-timing and Carrier-frequency Offset Estimation Based on Singular Value Decomposition\",\"authors\":\"Ziad Hatab, Hiroaki Takahashi, M. Gadringer, W. Bosch\",\"doi\":\"10.1109/CoBCom55489.2022.9880699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new technique for estimating symbol-timing offset (STO) and carrier frequency offset (CFO) in orthogonal frequency division multiplexing (OFDM) systems. The method we present is based on detecting a training sequence at the beginning of an OFDM stream using singular value decomposition (SVD), where STO and CFO are simultaneously estimated. We show by numerical simulations that our algorithm significantly improves STO and CFO estimation compared to conventional maximum likelihood (ML) techniques at low signal-to-noise ratio (SNR) values.\",\"PeriodicalId\":131597,\"journal\":{\"name\":\"2022 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoBCom55489.2022.9880699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoBCom55489.2022.9880699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种估计正交频分复用(OFDM)系统中符号时序偏移(STO)和载波频率偏移(CFO)的新技术。我们提出的方法是基于使用奇异值分解(SVD)在OFDM流的开始检测训练序列,其中STO和CFO同时估计。我们通过数值模拟表明,在低信噪比(SNR)值下,与传统的最大似然(ML)技术相比,我们的算法显着提高了STO和CFO估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OFDM Symbol-timing and Carrier-frequency Offset Estimation Based on Singular Value Decomposition
In this paper, we present a new technique for estimating symbol-timing offset (STO) and carrier frequency offset (CFO) in orthogonal frequency division multiplexing (OFDM) systems. The method we present is based on detecting a training sequence at the beginning of an OFDM stream using singular value decomposition (SVD), where STO and CFO are simultaneously estimated. We show by numerical simulations that our algorithm significantly improves STO and CFO estimation compared to conventional maximum likelihood (ML) techniques at low signal-to-noise ratio (SNR) values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信