一种新的人工神经网络训练使用进化算法强化学习

A. Reddipogu, G. Maxwell, C. MacLeod, M. Simpson
{"title":"一种新的人工神经网络训练使用进化算法强化学习","authors":"A. Reddipogu, G. Maxwell, C. MacLeod, M. Simpson","doi":"10.1109/ICONIP.2002.1199013","DOIUrl":null,"url":null,"abstract":"This paper discusses the development of a novel pattern recognition system using artificial neural networks (ANNs) and evolutionary algorithms for reinforcement learning (EARL). The network is based on neuronal interactions involved in identification of prey and predator in toads. The distributed neural network (DNN) is capable of recognizing and classifying various features. The lateral inhibition between the output neurons helps the network in the classification process - similar to the gate in gating network. The results obtained are compared with standard neural network architectures and learning algorithms.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A novel artificial neural network trained using evolutionary algorithms for reinforcement learning\",\"authors\":\"A. Reddipogu, G. Maxwell, C. MacLeod, M. Simpson\",\"doi\":\"10.1109/ICONIP.2002.1199013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the development of a novel pattern recognition system using artificial neural networks (ANNs) and evolutionary algorithms for reinforcement learning (EARL). The network is based on neuronal interactions involved in identification of prey and predator in toads. The distributed neural network (DNN) is capable of recognizing and classifying various features. The lateral inhibition between the output neurons helps the network in the classification process - similar to the gate in gating network. The results obtained are compared with standard neural network architectures and learning algorithms.\",\"PeriodicalId\":146553,\"journal\":{\"name\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIP.2002.1199013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1199013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文讨论了一种利用人工神经网络(ann)和进化算法进行强化学习(EARL)的新型模式识别系统的开发。这个网络是基于蟾蜍识别猎物和捕食者的神经元相互作用。分布式神经网络(DNN)具有识别和分类各种特征的能力。输出神经元之间的横向抑制有助于网络的分类过程——类似于门控网络中的门。所得结果与标准神经网络架构和学习算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel artificial neural network trained using evolutionary algorithms for reinforcement learning
This paper discusses the development of a novel pattern recognition system using artificial neural networks (ANNs) and evolutionary algorithms for reinforcement learning (EARL). The network is based on neuronal interactions involved in identification of prey and predator in toads. The distributed neural network (DNN) is capable of recognizing and classifying various features. The lateral inhibition between the output neurons helps the network in the classification process - similar to the gate in gating network. The results obtained are compared with standard neural network architectures and learning algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信