通过集成方法寻找显著性对象

Hui Zhong, Xiao Lin, Linhua Jiang
{"title":"通过集成方法寻找显著性对象","authors":"Hui Zhong, Xiao Lin, Linhua Jiang","doi":"10.1109/ICSAI.2017.8248286","DOIUrl":null,"url":null,"abstract":"Saliency detection is a hot topic in the community of computer image and vision. In this paper, we present a new saliency detection method. Given an input image, our method first uses Harris corner detection technique to approximately locate the salient region, and then assign the saliency scores to each pixel, getting the center-prior based map. In addition, we employ Bayesian formula to further optimize it, obtaining the center-Bayesian map. On the other hand, we use the image boundary to generate boundary-based map. Finally, we merge them into a saliency map as our final saliency map. A large number of experimental results demonstrate that the proposed algorithm is superior to most existing algorithms.","PeriodicalId":285726,"journal":{"name":"2017 4th International Conference on Systems and Informatics (ICSAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding saliency object via an integration approach\",\"authors\":\"Hui Zhong, Xiao Lin, Linhua Jiang\",\"doi\":\"10.1109/ICSAI.2017.8248286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Saliency detection is a hot topic in the community of computer image and vision. In this paper, we present a new saliency detection method. Given an input image, our method first uses Harris corner detection technique to approximately locate the salient region, and then assign the saliency scores to each pixel, getting the center-prior based map. In addition, we employ Bayesian formula to further optimize it, obtaining the center-Bayesian map. On the other hand, we use the image boundary to generate boundary-based map. Finally, we merge them into a saliency map as our final saliency map. A large number of experimental results demonstrate that the proposed algorithm is superior to most existing algorithms.\",\"PeriodicalId\":285726,\"journal\":{\"name\":\"2017 4th International Conference on Systems and Informatics (ICSAI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 4th International Conference on Systems and Informatics (ICSAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAI.2017.8248286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI.2017.8248286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

显著性检测是计算机图像和视觉领域的研究热点。本文提出了一种新的显著性检测方法。给定输入图像,我们的方法首先使用Harris角点检测技术对显著区域进行近似定位,然后为每个像素分配显著性分数,得到基于中心先验的地图。此外,我们利用贝叶斯公式对其进行进一步优化,得到了中心贝叶斯图。另一方面,我们利用图像边界生成基于边界的地图。最后,我们将它们合并成一个显著性图,作为我们最终的显著性图。大量实验结果表明,该算法优于大多数现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding saliency object via an integration approach
Saliency detection is a hot topic in the community of computer image and vision. In this paper, we present a new saliency detection method. Given an input image, our method first uses Harris corner detection technique to approximately locate the salient region, and then assign the saliency scores to each pixel, getting the center-prior based map. In addition, we employ Bayesian formula to further optimize it, obtaining the center-Bayesian map. On the other hand, we use the image boundary to generate boundary-based map. Finally, we merge them into a saliency map as our final saliency map. A large number of experimental results demonstrate that the proposed algorithm is superior to most existing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信