Yibin Gu, Yifan Li, Hua Wang, L. Liu, Ke Zhou, Wei Fang, Gang Hu, Jinhu Liu, Zhuo Cheng
{"title":"LPCA:学习基于MRC分析的文件存储系统缓存分配","authors":"Yibin Gu, Yifan Li, Hua Wang, L. Liu, Ke Zhou, Wei Fang, Gang Hu, Jinhu Liu, Zhuo Cheng","doi":"10.1145/3489517.3530662","DOIUrl":null,"url":null,"abstract":"File storage system (FSS) uses multi-caches to accelerate data accesses. Unfortunately, efficient FSS cache allocation remains extremely difficult. First, as the key of cache allocation, existing miss ratio curve (MRC) constructions are limited to LRU. Second, existing techniques are suitable for same-layer caches but not for hierarchical ones. We present a Learned MRC Profiling based Cache Allocation (LPCA) scheme for FSS. To the best of our knowledge, LPCA is the first to apply machine learning to model MRC under non-LRU, LPCA also explores optimization target for hierarchical caches, in that LPCA can provide universal and efficient cache allocation for FSSs.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LPCA: learned MRC profiling based cache allocation for file storage systems\",\"authors\":\"Yibin Gu, Yifan Li, Hua Wang, L. Liu, Ke Zhou, Wei Fang, Gang Hu, Jinhu Liu, Zhuo Cheng\",\"doi\":\"10.1145/3489517.3530662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"File storage system (FSS) uses multi-caches to accelerate data accesses. Unfortunately, efficient FSS cache allocation remains extremely difficult. First, as the key of cache allocation, existing miss ratio curve (MRC) constructions are limited to LRU. Second, existing techniques are suitable for same-layer caches but not for hierarchical ones. We present a Learned MRC Profiling based Cache Allocation (LPCA) scheme for FSS. To the best of our knowledge, LPCA is the first to apply machine learning to model MRC under non-LRU, LPCA also explores optimization target for hierarchical caches, in that LPCA can provide universal and efficient cache allocation for FSSs.\",\"PeriodicalId\":373005,\"journal\":{\"name\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489517.3530662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LPCA: learned MRC profiling based cache allocation for file storage systems
File storage system (FSS) uses multi-caches to accelerate data accesses. Unfortunately, efficient FSS cache allocation remains extremely difficult. First, as the key of cache allocation, existing miss ratio curve (MRC) constructions are limited to LRU. Second, existing techniques are suitable for same-layer caches but not for hierarchical ones. We present a Learned MRC Profiling based Cache Allocation (LPCA) scheme for FSS. To the best of our knowledge, LPCA is the first to apply machine learning to model MRC under non-LRU, LPCA also explores optimization target for hierarchical caches, in that LPCA can provide universal and efficient cache allocation for FSSs.