LPCA:学习基于MRC分析的文件存储系统缓存分配

Yibin Gu, Yifan Li, Hua Wang, L. Liu, Ke Zhou, Wei Fang, Gang Hu, Jinhu Liu, Zhuo Cheng
{"title":"LPCA:学习基于MRC分析的文件存储系统缓存分配","authors":"Yibin Gu, Yifan Li, Hua Wang, L. Liu, Ke Zhou, Wei Fang, Gang Hu, Jinhu Liu, Zhuo Cheng","doi":"10.1145/3489517.3530662","DOIUrl":null,"url":null,"abstract":"File storage system (FSS) uses multi-caches to accelerate data accesses. Unfortunately, efficient FSS cache allocation remains extremely difficult. First, as the key of cache allocation, existing miss ratio curve (MRC) constructions are limited to LRU. Second, existing techniques are suitable for same-layer caches but not for hierarchical ones. We present a Learned MRC Profiling based Cache Allocation (LPCA) scheme for FSS. To the best of our knowledge, LPCA is the first to apply machine learning to model MRC under non-LRU, LPCA also explores optimization target for hierarchical caches, in that LPCA can provide universal and efficient cache allocation for FSSs.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LPCA: learned MRC profiling based cache allocation for file storage systems\",\"authors\":\"Yibin Gu, Yifan Li, Hua Wang, L. Liu, Ke Zhou, Wei Fang, Gang Hu, Jinhu Liu, Zhuo Cheng\",\"doi\":\"10.1145/3489517.3530662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"File storage system (FSS) uses multi-caches to accelerate data accesses. Unfortunately, efficient FSS cache allocation remains extremely difficult. First, as the key of cache allocation, existing miss ratio curve (MRC) constructions are limited to LRU. Second, existing techniques are suitable for same-layer caches but not for hierarchical ones. We present a Learned MRC Profiling based Cache Allocation (LPCA) scheme for FSS. To the best of our knowledge, LPCA is the first to apply machine learning to model MRC under non-LRU, LPCA also explores optimization target for hierarchical caches, in that LPCA can provide universal and efficient cache allocation for FSSs.\",\"PeriodicalId\":373005,\"journal\":{\"name\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489517.3530662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文件存储系统FSS (File storage system)采用多高速缓存来提高数据访问速度。不幸的是,有效的FSS缓存分配仍然非常困难。首先,作为缓存分配的关键,现有的缺失率曲线(MRC)结构仅限于LRU。其次,现有技术适用于同层缓存,但不适用于分层缓存。提出了一种基于MRC分析的FSS缓存分配(LPCA)方案。据我们所知,LPCA是第一个将机器学习应用于非lru下的MRC模型,LPCA还探索了分层缓存的优化目标,因为LPCA可以为fss提供通用和高效的缓存分配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LPCA: learned MRC profiling based cache allocation for file storage systems
File storage system (FSS) uses multi-caches to accelerate data accesses. Unfortunately, efficient FSS cache allocation remains extremely difficult. First, as the key of cache allocation, existing miss ratio curve (MRC) constructions are limited to LRU. Second, existing techniques are suitable for same-layer caches but not for hierarchical ones. We present a Learned MRC Profiling based Cache Allocation (LPCA) scheme for FSS. To the best of our knowledge, LPCA is the first to apply machine learning to model MRC under non-LRU, LPCA also explores optimization target for hierarchical caches, in that LPCA can provide universal and efficient cache allocation for FSSs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信