{"title":"使用深度学习技术预测肺癌生存时间","authors":"Qanita Bani Baker, Maram Gharaibeh, Yara Al-Harahsheh","doi":"10.1109/ICICS52457.2021.9464589","DOIUrl":null,"url":null,"abstract":"Lung cancer is one of the most commonly diagnosed cancer. Most studies found that lung cancer patients have a survival time up to 5 years after the cancer is found. An accurate prognosis is the most critical aspect of a clinical decision-making process for patients. predicting patients’ survival time helps healthcare professionals to make treatment recommendations based on the prediction. In this paper, we used various deep learning methods to predict the survival time of Non-Small Cell Lung Cancer (NSCLC) patients in days which has been evaluated on clinical and radiomics dataset. The dataset was extracted from computerized tomography (CT) images that contain data for 300 patients. The concordance index (C-index) was used to evaluate the models. We applied several deep learning approaches and the best accuracy gained is 70.05% on the OWKIN task using Multilayer Perceptron (MLP) which outperforms the baseline model provided by the OWKIN task organizers","PeriodicalId":421803,"journal":{"name":"2021 12th International Conference on Information and Communication Systems (ICICS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting Lung Cancer Survival Time Using Deep Learning Techniques\",\"authors\":\"Qanita Bani Baker, Maram Gharaibeh, Yara Al-Harahsheh\",\"doi\":\"10.1109/ICICS52457.2021.9464589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lung cancer is one of the most commonly diagnosed cancer. Most studies found that lung cancer patients have a survival time up to 5 years after the cancer is found. An accurate prognosis is the most critical aspect of a clinical decision-making process for patients. predicting patients’ survival time helps healthcare professionals to make treatment recommendations based on the prediction. In this paper, we used various deep learning methods to predict the survival time of Non-Small Cell Lung Cancer (NSCLC) patients in days which has been evaluated on clinical and radiomics dataset. The dataset was extracted from computerized tomography (CT) images that contain data for 300 patients. The concordance index (C-index) was used to evaluate the models. We applied several deep learning approaches and the best accuracy gained is 70.05% on the OWKIN task using Multilayer Perceptron (MLP) which outperforms the baseline model provided by the OWKIN task organizers\",\"PeriodicalId\":421803,\"journal\":{\"name\":\"2021 12th International Conference on Information and Communication Systems (ICICS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 12th International Conference on Information and Communication Systems (ICICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICS52457.2021.9464589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Conference on Information and Communication Systems (ICICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICS52457.2021.9464589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Lung Cancer Survival Time Using Deep Learning Techniques
Lung cancer is one of the most commonly diagnosed cancer. Most studies found that lung cancer patients have a survival time up to 5 years after the cancer is found. An accurate prognosis is the most critical aspect of a clinical decision-making process for patients. predicting patients’ survival time helps healthcare professionals to make treatment recommendations based on the prediction. In this paper, we used various deep learning methods to predict the survival time of Non-Small Cell Lung Cancer (NSCLC) patients in days which has been evaluated on clinical and radiomics dataset. The dataset was extracted from computerized tomography (CT) images that contain data for 300 patients. The concordance index (C-index) was used to evaluate the models. We applied several deep learning approaches and the best accuracy gained is 70.05% on the OWKIN task using Multilayer Perceptron (MLP) which outperforms the baseline model provided by the OWKIN task organizers