基于LDA的广告相关词检测

Xin Jin, Huan Xia, Juan-Zi Li
{"title":"基于LDA的广告相关词检测","authors":"Xin Jin, Huan Xia, Juan-Zi Li","doi":"10.1109/WISA.2010.35","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new method for related word detection in Advertising by combining LDA topic model and word co-occurrence. We use a corpus of BaiduBaike, which is a Chinese Encyclopedia, to calculate the word co-occurrence. Words allocation on topics driven by LDA is used to sort the related words glossary which is obtained by the traditional co-occurrence procedure. We evaluate our method on advertising related word recognition, and the experiments result shows that the method is feasible.","PeriodicalId":122827,"journal":{"name":"2010 Seventh Web Information Systems and Applications Conference","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"LDA Based Related Word Detection in Advertising\",\"authors\":\"Xin Jin, Huan Xia, Juan-Zi Li\",\"doi\":\"10.1109/WISA.2010.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new method for related word detection in Advertising by combining LDA topic model and word co-occurrence. We use a corpus of BaiduBaike, which is a Chinese Encyclopedia, to calculate the word co-occurrence. Words allocation on topics driven by LDA is used to sort the related words glossary which is obtained by the traditional co-occurrence procedure. We evaluate our method on advertising related word recognition, and the experiments result shows that the method is feasible.\",\"PeriodicalId\":122827,\"journal\":{\"name\":\"2010 Seventh Web Information Systems and Applications Conference\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Seventh Web Information Systems and Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISA.2010.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Seventh Web Information Systems and Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2010.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文将LDA主题模型与词共现相结合,提出了一种新的广告相关词检测方法。我们使用中文百科全书百度的语料库来计算词共现。利用LDA驱动的主题词分配对传统共现过程得到的相关词表进行排序。对该方法在广告相关词识别中的应用进行了评价,实验结果表明该方法是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LDA Based Related Word Detection in Advertising
In this paper, we propose a new method for related word detection in Advertising by combining LDA topic model and word co-occurrence. We use a corpus of BaiduBaike, which is a Chinese Encyclopedia, to calculate the word co-occurrence. Words allocation on topics driven by LDA is used to sort the related words glossary which is obtained by the traditional co-occurrence procedure. We evaluate our method on advertising related word recognition, and the experiments result shows that the method is feasible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信