基于混合动力系统模型的互联网性能建模

Z. Liu, J. Almhana, V. Choulakian, R. McGorman
{"title":"基于混合动力系统模型的互联网性能建模","authors":"Z. Liu, J. Almhana, V. Choulakian, R. McGorman","doi":"10.1109/perser.2004.17","DOIUrl":null,"url":null,"abstract":"This paper models Internet traffic input stream and TCP connection durations using dynamical system models. A linear dynamical model with mixture Gaussian output is proposed for the Internet traffic input stream, and a linear dynamical system with mixture lognormal output is developed to model the TCP connection durations. In the proposed models, a sum of independent AR (1) processes is used to approximate the autocorrelation of the real data, and a Gaussian mixture or lognormal mixture is used to fit the marginal distribution. As a result, the output processes can capture the correlation and the marginal distribution simultaneously. Making use of the fact that at each iteration the parameter increment of the EM algorithm has a positive projection on the gradient of the likelihood, a stochastic approximation-based recursive EM algorithm is proposed to fit the traffic marginal distribution. A cross-validation criterion is used for the model selection. To illustrate the usefulness of the proposed models, several experimental results are provided.","PeriodicalId":222266,"journal":{"name":"The IEEE/ACS International Conference on Pervasive Services","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Internet Performance Modeling Using Mixture Dynamical System Models\",\"authors\":\"Z. Liu, J. Almhana, V. Choulakian, R. McGorman\",\"doi\":\"10.1109/perser.2004.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper models Internet traffic input stream and TCP connection durations using dynamical system models. A linear dynamical model with mixture Gaussian output is proposed for the Internet traffic input stream, and a linear dynamical system with mixture lognormal output is developed to model the TCP connection durations. In the proposed models, a sum of independent AR (1) processes is used to approximate the autocorrelation of the real data, and a Gaussian mixture or lognormal mixture is used to fit the marginal distribution. As a result, the output processes can capture the correlation and the marginal distribution simultaneously. Making use of the fact that at each iteration the parameter increment of the EM algorithm has a positive projection on the gradient of the likelihood, a stochastic approximation-based recursive EM algorithm is proposed to fit the traffic marginal distribution. A cross-validation criterion is used for the model selection. To illustrate the usefulness of the proposed models, several experimental results are provided.\",\"PeriodicalId\":222266,\"journal\":{\"name\":\"The IEEE/ACS International Conference on Pervasive Services\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The IEEE/ACS International Conference on Pervasive Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/perser.2004.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The IEEE/ACS International Conference on Pervasive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/perser.2004.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用动态系统模型对互联网流量输入流和TCP连接持续时间进行建模。针对互联网流量输入流,提出了混合高斯输出的线性动态模型,并建立了混合对数正态输出的线性动态系统来模拟TCP连接持续时间。在所提出的模型中,使用独立AR(1)过程的和来近似实际数据的自相关性,并使用高斯混合或对数正态混合来拟合边缘分布。因此,输出过程可以同时捕获相关性和边际分布。利用EM算法每次迭代时参数增量对似然梯度有正投影的特点,提出了一种基于随机近似的递推EM算法来拟合交通边际分布。交叉验证标准用于模型选择。为了说明所提出的模型的有效性,给出了几个实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Internet Performance Modeling Using Mixture Dynamical System Models
This paper models Internet traffic input stream and TCP connection durations using dynamical system models. A linear dynamical model with mixture Gaussian output is proposed for the Internet traffic input stream, and a linear dynamical system with mixture lognormal output is developed to model the TCP connection durations. In the proposed models, a sum of independent AR (1) processes is used to approximate the autocorrelation of the real data, and a Gaussian mixture or lognormal mixture is used to fit the marginal distribution. As a result, the output processes can capture the correlation and the marginal distribution simultaneously. Making use of the fact that at each iteration the parameter increment of the EM algorithm has a positive projection on the gradient of the likelihood, a stochastic approximation-based recursive EM algorithm is proposed to fit the traffic marginal distribution. A cross-validation criterion is used for the model selection. To illustrate the usefulness of the proposed models, several experimental results are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信