基于改进k维树最近邻搜索的鱼类立体匹配

Maria Gemel B. Palconit, Ronnie S. Concepcion, Jonnel D. Alejandrino, E. Sybingco, R. R. Vicerra, A. Bandala, E. Dadios
{"title":"基于改进k维树最近邻搜索的鱼类立体匹配","authors":"Maria Gemel B. Palconit, Ronnie S. Concepcion, Jonnel D. Alejandrino, E. Sybingco, R. R. Vicerra, A. Bandala, E. Dadios","doi":"10.1109/HNICEM54116.2021.9731879","DOIUrl":null,"url":null,"abstract":"Stereo matching is one of the primary determining factors of 3D reconstruction accuracy. This study proposes a modified k-d tree algorithm to match the detected centroids of the fish in 527 pairs of stereo images. The primary purpose of the modified k-d tree is to eliminate the matching errors caused by the close proximities of the fish as measured by the convex hull. With the fish proximities at not greater than 500 convex hulls, the probability of successful matching is only 5%. Considering all the input image pairs with convex hulls of 0 to 6500, the centroid matching using the conventional k-d tree obtained the maximum precision of S7%. With the implementation of the modified k-d tree, the matching precision has increased to 100%, which means the errors in centroid matching were totally eliminated with all the varying levels of fish proximities.","PeriodicalId":129868,"journal":{"name":"2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM)","volume":"392 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fish Stereo Matching using Modified k-Dimensional Tree Nearest Neighbor Search\",\"authors\":\"Maria Gemel B. Palconit, Ronnie S. Concepcion, Jonnel D. Alejandrino, E. Sybingco, R. R. Vicerra, A. Bandala, E. Dadios\",\"doi\":\"10.1109/HNICEM54116.2021.9731879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stereo matching is one of the primary determining factors of 3D reconstruction accuracy. This study proposes a modified k-d tree algorithm to match the detected centroids of the fish in 527 pairs of stereo images. The primary purpose of the modified k-d tree is to eliminate the matching errors caused by the close proximities of the fish as measured by the convex hull. With the fish proximities at not greater than 500 convex hulls, the probability of successful matching is only 5%. Considering all the input image pairs with convex hulls of 0 to 6500, the centroid matching using the conventional k-d tree obtained the maximum precision of S7%. With the implementation of the modified k-d tree, the matching precision has increased to 100%, which means the errors in centroid matching were totally eliminated with all the varying levels of fish proximities.\",\"PeriodicalId\":129868,\"journal\":{\"name\":\"2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM)\",\"volume\":\"392 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HNICEM54116.2021.9731879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM54116.2021.9731879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

立体匹配是决定三维重建精度的主要因素之一。本文提出了一种改进的k-d树算法,对527对立体图像中检测到的鱼的质心进行匹配。改进的k-d树的主要目的是消除由凸包测量的鱼的接近度引起的匹配误差。当鱼的邻近点不大于500个凸包时,匹配成功的概率仅为5%。考虑所有凸包为0 ~ 6500的输入图像对,使用传统的k-d树进行质心匹配获得了S7%的最大精度。通过改进的k-d树的实现,匹配精度提高到100%,完全消除了在所有不同级别的鱼邻近度下的质心匹配误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fish Stereo Matching using Modified k-Dimensional Tree Nearest Neighbor Search
Stereo matching is one of the primary determining factors of 3D reconstruction accuracy. This study proposes a modified k-d tree algorithm to match the detected centroids of the fish in 527 pairs of stereo images. The primary purpose of the modified k-d tree is to eliminate the matching errors caused by the close proximities of the fish as measured by the convex hull. With the fish proximities at not greater than 500 convex hulls, the probability of successful matching is only 5%. Considering all the input image pairs with convex hulls of 0 to 6500, the centroid matching using the conventional k-d tree obtained the maximum precision of S7%. With the implementation of the modified k-d tree, the matching precision has increased to 100%, which means the errors in centroid matching were totally eliminated with all the varying levels of fish proximities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信