Alexander G. B. Colpitts, B. Petersen, G. Messier, R. Behin
{"title":"基于复杂基带信道脉冲响应夹角的MIMO信道分集分析","authors":"Alexander G. B. Colpitts, B. Petersen, G. Messier, R. Behin","doi":"10.1145/3430116.3430119","DOIUrl":null,"url":null,"abstract":"MIMO channel analysis typically includes capacity; a more diverse channel will result in increased channel capacity. Many statistical measures for wireless channels exist but throughput performance ultimately is determined through the orthogonality of the subchannels comprising the MIMO channel. The capacity of MIMO channels is considered in conjunction with the angles between the complex channel impulse response vectors. The angle between complex Euclidean vectors is derived. For simulated complex baseband Rayleigh fading channel impulse responses, a short finite-length response with a constant power delay profile is similar in angle distribution to a longer response with an exponential profile, whose amplitude time constant is the same as the length of the former. The exponential profile limitations on the sub-channel vectors is shown to extend to capacity. The relationship of the variance of the complex sub-channel vector angles to the variance of the channel capacity is shown.","PeriodicalId":285534,"journal":{"name":"Proceedings of the 9th International Conference on Telecommunications and Remote Sensing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MIMO Channel Diversity Analysis Using Angles Between Complex Baseband Channel Impulse Responses\",\"authors\":\"Alexander G. B. Colpitts, B. Petersen, G. Messier, R. Behin\",\"doi\":\"10.1145/3430116.3430119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MIMO channel analysis typically includes capacity; a more diverse channel will result in increased channel capacity. Many statistical measures for wireless channels exist but throughput performance ultimately is determined through the orthogonality of the subchannels comprising the MIMO channel. The capacity of MIMO channels is considered in conjunction with the angles between the complex channel impulse response vectors. The angle between complex Euclidean vectors is derived. For simulated complex baseband Rayleigh fading channel impulse responses, a short finite-length response with a constant power delay profile is similar in angle distribution to a longer response with an exponential profile, whose amplitude time constant is the same as the length of the former. The exponential profile limitations on the sub-channel vectors is shown to extend to capacity. The relationship of the variance of the complex sub-channel vector angles to the variance of the channel capacity is shown.\",\"PeriodicalId\":285534,\"journal\":{\"name\":\"Proceedings of the 9th International Conference on Telecommunications and Remote Sensing\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Conference on Telecommunications and Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3430116.3430119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Telecommunications and Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3430116.3430119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MIMO Channel Diversity Analysis Using Angles Between Complex Baseband Channel Impulse Responses
MIMO channel analysis typically includes capacity; a more diverse channel will result in increased channel capacity. Many statistical measures for wireless channels exist but throughput performance ultimately is determined through the orthogonality of the subchannels comprising the MIMO channel. The capacity of MIMO channels is considered in conjunction with the angles between the complex channel impulse response vectors. The angle between complex Euclidean vectors is derived. For simulated complex baseband Rayleigh fading channel impulse responses, a short finite-length response with a constant power delay profile is similar in angle distribution to a longer response with an exponential profile, whose amplitude time constant is the same as the length of the former. The exponential profile limitations on the sub-channel vectors is shown to extend to capacity. The relationship of the variance of the complex sub-channel vector angles to the variance of the channel capacity is shown.