基于MapReduce的大型二部图中矩形计数的改进算法

Ahmed T. Sharafeldeen, M. F. Alrahmawy, S. Elmougy
{"title":"基于MapReduce的大型二部图中矩形计数的改进算法","authors":"Ahmed T. Sharafeldeen, M. F. Alrahmawy, S. Elmougy","doi":"10.21608/mjcis.2018.311999","DOIUrl":null,"url":null,"abstract":"Rectangles for bipartite graphs are like triangles for unipartite graphs as both represent the smallest cycles in such graphs. Rectangle Counting is considered an important task in many bipartite network analysis metrics and is considered the core of computing such metrics, especially in cluster coefficient, bitruss, etc. However, there are few efficient algorithms to deal with this problem, especially in a large bipartite graph. In this work, we use MapReduce to enhance an algorithm to count rectangles in a large bipartite graph. The results show that our proposed MapReduce-based algorithm gives a better execution time than the existing algorithms, especially when it is applied in very large bipartite graphs.","PeriodicalId":253950,"journal":{"name":"Mansoura Journal for Computer and Information Sciences","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhanced Algorithms for Counting Rectangles in Large Bipartite Graphs using MapReduce\",\"authors\":\"Ahmed T. Sharafeldeen, M. F. Alrahmawy, S. Elmougy\",\"doi\":\"10.21608/mjcis.2018.311999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rectangles for bipartite graphs are like triangles for unipartite graphs as both represent the smallest cycles in such graphs. Rectangle Counting is considered an important task in many bipartite network analysis metrics and is considered the core of computing such metrics, especially in cluster coefficient, bitruss, etc. However, there are few efficient algorithms to deal with this problem, especially in a large bipartite graph. In this work, we use MapReduce to enhance an algorithm to count rectangles in a large bipartite graph. The results show that our proposed MapReduce-based algorithm gives a better execution time than the existing algorithms, especially when it is applied in very large bipartite graphs.\",\"PeriodicalId\":253950,\"journal\":{\"name\":\"Mansoura Journal for Computer and Information Sciences\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mansoura Journal for Computer and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/mjcis.2018.311999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mansoura Journal for Computer and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/mjcis.2018.311999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

二部图的矩形与单部图的三角形一样,都表示图中的最小环。矩形计数在许多二部网络分析度量中被认为是一项重要的任务,并且被认为是计算二部网络分析度量的核心,特别是在聚类系数、比特线等方面。然而,很少有有效的算法来处理这个问题,特别是在一个大的二部图中。在这项工作中,我们使用MapReduce来增强一种算法来对大型二部图中的矩形进行计数。结果表明,我们提出的基于mapreduce的算法比现有算法有更好的执行时间,特别是当它应用于非常大的二部图时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Algorithms for Counting Rectangles in Large Bipartite Graphs using MapReduce
Rectangles for bipartite graphs are like triangles for unipartite graphs as both represent the smallest cycles in such graphs. Rectangle Counting is considered an important task in many bipartite network analysis metrics and is considered the core of computing such metrics, especially in cluster coefficient, bitruss, etc. However, there are few efficient algorithms to deal with this problem, especially in a large bipartite graph. In this work, we use MapReduce to enhance an algorithm to count rectangles in a large bipartite graph. The results show that our proposed MapReduce-based algorithm gives a better execution time than the existing algorithms, especially when it is applied in very large bipartite graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信