不同温度和叶片湿度条件下亚洲超级大豆锈病发病率的贝叶斯逼近研究

Ricardo Martins de Abreu Silva, F. L. Valentim, M. Alves
{"title":"不同温度和叶片湿度条件下亚洲超级大豆锈病发病率的贝叶斯逼近研究","authors":"Ricardo Martins de Abreu Silva, F. L. Valentim, M. Alves","doi":"10.1109/HIS.2007.71","DOIUrl":null,"url":null,"abstract":"The Asian soybean rust (Phakopsora pachyrhizi H. Sydow & P. Sydowj, which has been reported in areas of tropical and subtropical climates around the world, causes significant soybean (Glycine max L. Merr.) yield reduction. The disease progress is influenced by biotic factors such as interaction pathogen/host and abiotic factors of the environment. This work presents three models using bayesian approach to study Asian Suprema soybean rust incidence in different temperature and leaf wetness conditions. The models present estimates equivalents to non-linear regression model of Reis et al, fuzzy model of Alves et al and neuro-fuzzy model of Silva et al, when compared on the results from experimental design realized by Alves et al.","PeriodicalId":359991,"journal":{"name":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian approaching for Asian Suprema soybean rust incidence study in different conditions of temperatures and leaf wetness\",\"authors\":\"Ricardo Martins de Abreu Silva, F. L. Valentim, M. Alves\",\"doi\":\"10.1109/HIS.2007.71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Asian soybean rust (Phakopsora pachyrhizi H. Sydow & P. Sydowj, which has been reported in areas of tropical and subtropical climates around the world, causes significant soybean (Glycine max L. Merr.) yield reduction. The disease progress is influenced by biotic factors such as interaction pathogen/host and abiotic factors of the environment. This work presents three models using bayesian approach to study Asian Suprema soybean rust incidence in different temperature and leaf wetness conditions. The models present estimates equivalents to non-linear regression model of Reis et al, fuzzy model of Alves et al and neuro-fuzzy model of Silva et al, when compared on the results from experimental design realized by Alves et al.\",\"PeriodicalId\":359991,\"journal\":{\"name\":\"7th International Conference on Hybrid Intelligent Systems (HIS 2007)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Conference on Hybrid Intelligent Systems (HIS 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2007.71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2007.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

亚洲大豆锈病(Phakopsora pachyrhizi H. Sydow & P. Sydowj)已在世界各地的热带和亚热带气候地区报道,导致大豆(Glycine max L. Merr.)产量显著下降。病原菌/宿主相互作用等生物因素和环境中的非生物因素影响着疾病的发展。本文采用贝叶斯方法建立了三种模型,研究了不同温度和叶片湿度条件下亚洲超级大豆锈病的发病率。与Alves等人实现的实验设计结果相比,模型给出的估计相当于Reis等人的非线性回归模型、Alves等人的模糊模型和Silva等人的神经模糊模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian approaching for Asian Suprema soybean rust incidence study in different conditions of temperatures and leaf wetness
The Asian soybean rust (Phakopsora pachyrhizi H. Sydow & P. Sydowj, which has been reported in areas of tropical and subtropical climates around the world, causes significant soybean (Glycine max L. Merr.) yield reduction. The disease progress is influenced by biotic factors such as interaction pathogen/host and abiotic factors of the environment. This work presents three models using bayesian approach to study Asian Suprema soybean rust incidence in different temperature and leaf wetness conditions. The models present estimates equivalents to non-linear regression model of Reis et al, fuzzy model of Alves et al and neuro-fuzzy model of Silva et al, when compared on the results from experimental design realized by Alves et al.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信