支持临时排序聚合

Chengkai Li, K. Chang, I. Ilyas
{"title":"支持临时排序聚合","authors":"Chengkai Li, K. Chang, I. Ilyas","doi":"10.1145/1142473.1142481","DOIUrl":null,"url":null,"abstract":"This paper presents a principled framework for efficient processing of ad-hoc top-k (ranking) aggregate queries, which provide the k groups with the highest aggregates as results. Essential support of such queries is lacking in current systems, which process the queries in a naïve materialize-group-sort scheme that can be prohibitively inefficient. Our framework is based on three fundamental principles. The Upper-Bound Principle dictates the requirements of early pruning, and the Group-Ranking and Tuple-Ranking Principles dictate group-ordering and tuple-ordering requirements. They together guide the query processor toward a provably optimal tuple schedule for aggregate query processing. We propose a new execution framework to apply the principles and requirements. We address the challenges in realizing the framework and implementing new query operators, enabling efficient group-aware and rank-aware query plans. The experimental study validates our framework by demonstrating orders of magnitude performance improvement in the new query plans, compared with the traditional plans.","PeriodicalId":416090,"journal":{"name":"Proceedings of the 2006 ACM SIGMOD international conference on Management of data","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":"{\"title\":\"Supporting ad-hoc ranking aggregates\",\"authors\":\"Chengkai Li, K. Chang, I. Ilyas\",\"doi\":\"10.1145/1142473.1142481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a principled framework for efficient processing of ad-hoc top-k (ranking) aggregate queries, which provide the k groups with the highest aggregates as results. Essential support of such queries is lacking in current systems, which process the queries in a naïve materialize-group-sort scheme that can be prohibitively inefficient. Our framework is based on three fundamental principles. The Upper-Bound Principle dictates the requirements of early pruning, and the Group-Ranking and Tuple-Ranking Principles dictate group-ordering and tuple-ordering requirements. They together guide the query processor toward a provably optimal tuple schedule for aggregate query processing. We propose a new execution framework to apply the principles and requirements. We address the challenges in realizing the framework and implementing new query operators, enabling efficient group-aware and rank-aware query plans. The experimental study validates our framework by demonstrating orders of magnitude performance improvement in the new query plans, compared with the traditional plans.\",\"PeriodicalId\":416090,\"journal\":{\"name\":\"Proceedings of the 2006 ACM SIGMOD international conference on Management of data\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2006 ACM SIGMOD international conference on Management of data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1142473.1142481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2006 ACM SIGMOD international conference on Management of data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1142473.1142481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

摘要

本文提出了一个有效处理ad-hoc top-k(排序)聚合查询的原则框架,该框架为k组提供最高聚合的结果。当前系统缺乏对此类查询的基本支持,它们以naïve materialize-group-sort模式处理查询,这种模式的效率非常低。我们的框架以三项基本原则为基础。上界原则规定了早期剪枝的要求,组排序原则和元排序原则规定了组排序原则和元排序原则。它们共同引导查询处理器朝着可证明的最优元组调度进行聚合查询处理。我们提出了一个新的执行框架来应用这些原则和要求。我们解决了在实现框架和实现新的查询操作符方面的挑战,实现了高效的组感知和排名感知查询计划。实验研究验证了我们的框架,与传统的查询计划相比,新查询计划的性能有了数量级的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supporting ad-hoc ranking aggregates
This paper presents a principled framework for efficient processing of ad-hoc top-k (ranking) aggregate queries, which provide the k groups with the highest aggregates as results. Essential support of such queries is lacking in current systems, which process the queries in a naïve materialize-group-sort scheme that can be prohibitively inefficient. Our framework is based on three fundamental principles. The Upper-Bound Principle dictates the requirements of early pruning, and the Group-Ranking and Tuple-Ranking Principles dictate group-ordering and tuple-ordering requirements. They together guide the query processor toward a provably optimal tuple schedule for aggregate query processing. We propose a new execution framework to apply the principles and requirements. We address the challenges in realizing the framework and implementing new query operators, enabling efficient group-aware and rank-aware query plans. The experimental study validates our framework by demonstrating orders of magnitude performance improvement in the new query plans, compared with the traditional plans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信