基于图形的三维协同视差图估计技术

Doaa A. Altantawy, S. Kishk
{"title":"基于图形的三维协同视差图估计技术","authors":"Doaa A. Altantawy, S. Kishk","doi":"10.1109/ICCES.2015.7393057","DOIUrl":null,"url":null,"abstract":"In this paper, a new segment-based stereo matching algorithm is proposed (3DFilt_Gc). Adopting a fast and accurate new energy formulation for the stereo problem in the segment domain makes the proposed 3DFilt_Gc a strong candidate with the top ranked stereo matching techniques according to Middlebury benchmark. Firstly, it introduces a 3D collaborative filter with a new self adapting similarity measure for more reliable initial disparity estimates. Secondly, RANSAC with SVD are employed for a robust disparity plane fitting over the most reliable segments. Finally, a refined accurate disparity map is obtained by the proper disparity plane assignment using graph cuts. In addition, robustness in the performance is shown when it is tested against a blur in one of the stereo images (3DFilt_Gc _Blur) as one of the real image conditions.","PeriodicalId":227813,"journal":{"name":"2015 Tenth International Conference on Computer Engineering & Systems (ICCES)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph-based 3D collaborative disparity map estimation technique\",\"authors\":\"Doaa A. Altantawy, S. Kishk\",\"doi\":\"10.1109/ICCES.2015.7393057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new segment-based stereo matching algorithm is proposed (3DFilt_Gc). Adopting a fast and accurate new energy formulation for the stereo problem in the segment domain makes the proposed 3DFilt_Gc a strong candidate with the top ranked stereo matching techniques according to Middlebury benchmark. Firstly, it introduces a 3D collaborative filter with a new self adapting similarity measure for more reliable initial disparity estimates. Secondly, RANSAC with SVD are employed for a robust disparity plane fitting over the most reliable segments. Finally, a refined accurate disparity map is obtained by the proper disparity plane assignment using graph cuts. In addition, robustness in the performance is shown when it is tested against a blur in one of the stereo images (3DFilt_Gc _Blur) as one of the real image conditions.\",\"PeriodicalId\":227813,\"journal\":{\"name\":\"2015 Tenth International Conference on Computer Engineering & Systems (ICCES)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Tenth International Conference on Computer Engineering & Systems (ICCES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCES.2015.7393057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Tenth International Conference on Computer Engineering & Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2015.7393057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的基于分段的立体匹配算法3DFilt_Gc。采用快速准确的新能量公式来解决分割域的立体问题,使所提出的3DFilt_Gc成为Middlebury基准中立体匹配技术排名靠前的强有力的候选者。首先,引入了一种三维协同滤波器,该滤波器采用一种新的自适应相似度度量,以获得更可靠的初始视差估计。其次,将RANSAC与奇异值分解相结合,对最可靠的视差平面进行鲁棒拟合。最后,利用图切法合理分配视差平面,得到精细化的精确视差图。此外,当将其中一个立体图像(3DFilt_Gc _Blur)中的模糊作为真实图像条件之一进行测试时,性能的鲁棒性得到了体现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph-based 3D collaborative disparity map estimation technique
In this paper, a new segment-based stereo matching algorithm is proposed (3DFilt_Gc). Adopting a fast and accurate new energy formulation for the stereo problem in the segment domain makes the proposed 3DFilt_Gc a strong candidate with the top ranked stereo matching techniques according to Middlebury benchmark. Firstly, it introduces a 3D collaborative filter with a new self adapting similarity measure for more reliable initial disparity estimates. Secondly, RANSAC with SVD are employed for a robust disparity plane fitting over the most reliable segments. Finally, a refined accurate disparity map is obtained by the proper disparity plane assignment using graph cuts. In addition, robustness in the performance is shown when it is tested against a blur in one of the stereo images (3DFilt_Gc _Blur) as one of the real image conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信