{"title":"深度强化学习在交通运输中的应用","authors":"Zhiwei Qin, Jian Tang, Jieping Ye","doi":"10.1145/3292500.3332299","DOIUrl":null,"url":null,"abstract":"This tutorial aims to provide the audience with a guided introduction to deep reinforcement learning (DRL) with specially curated application case studies in transportation. The tutorial covers both theory and practice, with more emphasis on the practical aspects of DRL that are pertinent to tackle transportation challenges. Some core examples include online ride order dispatching, fleet management, traffic signals control, route planning, and autonomous driving.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Deep Reinforcement Learning with Applications in Transportation\",\"authors\":\"Zhiwei Qin, Jian Tang, Jieping Ye\",\"doi\":\"10.1145/3292500.3332299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This tutorial aims to provide the audience with a guided introduction to deep reinforcement learning (DRL) with specially curated application case studies in transportation. The tutorial covers both theory and practice, with more emphasis on the practical aspects of DRL that are pertinent to tackle transportation challenges. Some core examples include online ride order dispatching, fleet management, traffic signals control, route planning, and autonomous driving.\",\"PeriodicalId\":186134,\"journal\":{\"name\":\"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3292500.3332299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3332299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Reinforcement Learning with Applications in Transportation
This tutorial aims to provide the audience with a guided introduction to deep reinforcement learning (DRL) with specially curated application case studies in transportation. The tutorial covers both theory and practice, with more emphasis on the practical aspects of DRL that are pertinent to tackle transportation challenges. Some core examples include online ride order dispatching, fleet management, traffic signals control, route planning, and autonomous driving.