使用符号执行和模型计数的Java概率编程

W. Visser, C. Pasareanu
{"title":"使用符号执行和模型计数的Java概率编程","authors":"W. Visser, C. Pasareanu","doi":"10.1145/3129416.3129433","DOIUrl":null,"url":null,"abstract":"In this paper we describe a probabilistic programming environment for Java that is based on symbolic execution and model counting. The novelty of the framework is that the probability distributions in the program can themselves be symbolic, which allows parametric probabilistic programming. The framework handles typical probabilistic programming features, such as observe statements, and can be used for the encoding and analysis of Discrete Time Markov Chains (DTMC), Bayesian Networks, etc. We show two examples of using the system: (1) analysis of bubble sort when using an unreliable comparison operation, and, (2) analysis of a simulation model of autonomous aircraft towing vehicles, to show whether plans generated for these vehicles are robust when probability distributions are changed from the ones used to generate the plans.","PeriodicalId":269578,"journal":{"name":"Research Conference of the South African Institute of Computer Scientists and Information Technologists","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Probabilistic programming for Java using symbolic execution and model counting\",\"authors\":\"W. Visser, C. Pasareanu\",\"doi\":\"10.1145/3129416.3129433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe a probabilistic programming environment for Java that is based on symbolic execution and model counting. The novelty of the framework is that the probability distributions in the program can themselves be symbolic, which allows parametric probabilistic programming. The framework handles typical probabilistic programming features, such as observe statements, and can be used for the encoding and analysis of Discrete Time Markov Chains (DTMC), Bayesian Networks, etc. We show two examples of using the system: (1) analysis of bubble sort when using an unreliable comparison operation, and, (2) analysis of a simulation model of autonomous aircraft towing vehicles, to show whether plans generated for these vehicles are robust when probability distributions are changed from the ones used to generate the plans.\",\"PeriodicalId\":269578,\"journal\":{\"name\":\"Research Conference of the South African Institute of Computer Scientists and Information Technologists\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Conference of the South African Institute of Computer Scientists and Information Technologists\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3129416.3129433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Conference of the South African Institute of Computer Scientists and Information Technologists","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3129416.3129433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文描述了一种基于符号执行和模型计数的Java概率编程环境。该框架的新颖之处在于程序中的概率分布本身可以是符号的,这允许参数概率规划。该框架处理典型的概率编程特征,如观察语句,并可用于编码和分析离散时间马尔可夫链(DTMC),贝叶斯网络等。我们展示了使用该系统的两个例子:(1)在使用不可靠的比较操作时分析气泡排序,以及(2)分析自主飞机拖曳车辆的仿真模型,以显示当用于生成计划的概率分布发生变化时,为这些车辆生成的计划是否具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic programming for Java using symbolic execution and model counting
In this paper we describe a probabilistic programming environment for Java that is based on symbolic execution and model counting. The novelty of the framework is that the probability distributions in the program can themselves be symbolic, which allows parametric probabilistic programming. The framework handles typical probabilistic programming features, such as observe statements, and can be used for the encoding and analysis of Discrete Time Markov Chains (DTMC), Bayesian Networks, etc. We show two examples of using the system: (1) analysis of bubble sort when using an unreliable comparison operation, and, (2) analysis of a simulation model of autonomous aircraft towing vehicles, to show whether plans generated for these vehicles are robust when probability distributions are changed from the ones used to generate the plans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信