模糊关联规则数据挖掘在网络入侵检测中的应用

A. El-Semary, J. Edmonds, J. González-Pino, M. Papa
{"title":"模糊关联规则数据挖掘在网络入侵检测中的应用","authors":"A. El-Semary, J. Edmonds, J. González-Pino, M. Papa","doi":"10.1109/IAW.2006.1652083","DOIUrl":null,"url":null,"abstract":"This paper describes the use of fuzzy logic in the implementation of an intelligent intrusion detection system. The system uses a data miner that integrates Apriori and Kuok's algorithms to produce fuzzy logic rules that capture features of interest in network traffic. Using an inference engine, implemented using FuzzyJess, the intrusion detection system evaluates these rules and gives network administrators indications of the firing strength of the ruleset. The resulting system is capable of adapting to changes in attack signatures. In addition, by identifying relevant network traffic attributes, the system has the inherent ability to provide abstract views that support network security analysis. Examples and experimental results using intrusion detection datasets from MIT Lincoln Laboratory demonstrate the potential of the approach","PeriodicalId":326306,"journal":{"name":"2006 IEEE Information Assurance Workshop","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"Applying Data Mining of Fuzzy Association Rules to Network Intrusion Detection\",\"authors\":\"A. El-Semary, J. Edmonds, J. González-Pino, M. Papa\",\"doi\":\"10.1109/IAW.2006.1652083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the use of fuzzy logic in the implementation of an intelligent intrusion detection system. The system uses a data miner that integrates Apriori and Kuok's algorithms to produce fuzzy logic rules that capture features of interest in network traffic. Using an inference engine, implemented using FuzzyJess, the intrusion detection system evaluates these rules and gives network administrators indications of the firing strength of the ruleset. The resulting system is capable of adapting to changes in attack signatures. In addition, by identifying relevant network traffic attributes, the system has the inherent ability to provide abstract views that support network security analysis. Examples and experimental results using intrusion detection datasets from MIT Lincoln Laboratory demonstrate the potential of the approach\",\"PeriodicalId\":326306,\"journal\":{\"name\":\"2006 IEEE Information Assurance Workshop\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Information Assurance Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAW.2006.1652083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Information Assurance Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAW.2006.1652083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

摘要

本文描述了模糊逻辑在智能入侵检测系统中的应用。该系统使用一个数据挖掘器,集成了Apriori和Kuok的算法,生成模糊逻辑规则,捕捉网络流量中感兴趣的特征。使用推理引擎(使用FuzzyJess实现),入侵检测系统评估这些规则,并向网络管理员提供规则集触发强度的指示。生成的系统能够适应攻击签名的变化。此外,通过识别相关的网络流量属性,系统具有提供支持网络安全分析的抽象视图的固有能力。使用麻省理工学院林肯实验室入侵检测数据集的示例和实验结果证明了该方法的潜力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying Data Mining of Fuzzy Association Rules to Network Intrusion Detection
This paper describes the use of fuzzy logic in the implementation of an intelligent intrusion detection system. The system uses a data miner that integrates Apriori and Kuok's algorithms to produce fuzzy logic rules that capture features of interest in network traffic. Using an inference engine, implemented using FuzzyJess, the intrusion detection system evaluates these rules and gives network administrators indications of the firing strength of the ruleset. The resulting system is capable of adapting to changes in attack signatures. In addition, by identifying relevant network traffic attributes, the system has the inherent ability to provide abstract views that support network security analysis. Examples and experimental results using intrusion detection datasets from MIT Lincoln Laboratory demonstrate the potential of the approach
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信