基于矢量的转换系统的序无关性

M. Raffelsieper, M. Mousavi, H. Zantema
{"title":"基于矢量的转换系统的序无关性","authors":"M. Raffelsieper, M. Mousavi, H. Zantema","doi":"10.1109/ACSD.2010.24","DOIUrl":null,"url":null,"abstract":"Semantics of many specification languages, particularly those used in the domain of hardware, is described in terms of vector-based transition systems. In such a transition system, each macro-step transition is labeled by a vector of inputs. When performing a macro-step, several inputs may potentially change. Each macro-step can thus be decomposed in a number of micro-steps, taking one input change at a time into account. This is akin to an interleaving semantics, where a concurrent step is represented by an interleaving of its constituting components. We present criteria on vector-based transition systems, which guarantee that the next state computation is independent of the order in which these micro-steps are executed. If our criteria are satisfied by the semantic definition of a certain specification, then its state-space generation or exploration algorithm needs to only consider one representative among all possible permutations of such micro-steps. We demonstrate the applicability of our criteria to the specification of transistor netlists.","PeriodicalId":169191,"journal":{"name":"2010 10th International Conference on Application of Concurrency to System Design","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Order-Independence of Vector-Based Transition Systems\",\"authors\":\"M. Raffelsieper, M. Mousavi, H. Zantema\",\"doi\":\"10.1109/ACSD.2010.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantics of many specification languages, particularly those used in the domain of hardware, is described in terms of vector-based transition systems. In such a transition system, each macro-step transition is labeled by a vector of inputs. When performing a macro-step, several inputs may potentially change. Each macro-step can thus be decomposed in a number of micro-steps, taking one input change at a time into account. This is akin to an interleaving semantics, where a concurrent step is represented by an interleaving of its constituting components. We present criteria on vector-based transition systems, which guarantee that the next state computation is independent of the order in which these micro-steps are executed. If our criteria are satisfied by the semantic definition of a certain specification, then its state-space generation or exploration algorithm needs to only consider one representative among all possible permutations of such micro-steps. We demonstrate the applicability of our criteria to the specification of transistor netlists.\",\"PeriodicalId\":169191,\"journal\":{\"name\":\"2010 10th International Conference on Application of Concurrency to System Design\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 10th International Conference on Application of Concurrency to System Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSD.2010.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 10th International Conference on Application of Concurrency to System Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSD.2010.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

许多规范语言的语义,特别是那些在硬件领域使用的语言,是根据基于向量的转换系统来描述的。在这样的转换系统中,每个宏步骤转换由输入向量标记。在执行宏步骤时,几个输入可能会发生变化。因此,每个宏步骤可以分解为许多微步骤,每次考虑一个输入变化。这类似于交错语义,其中并发步骤由其组成组件的交错表示。我们提出了基于向量的转移系统的准则,保证了下一个状态计算与这些微步骤的执行顺序无关。如果我们的标准满足某个规范的语义定义,那么它的状态空间生成或探索算法只需要在这些微步骤的所有可能排列中考虑一个代表。我们证明了我们的标准对晶体管网表规格的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Order-Independence of Vector-Based Transition Systems
Semantics of many specification languages, particularly those used in the domain of hardware, is described in terms of vector-based transition systems. In such a transition system, each macro-step transition is labeled by a vector of inputs. When performing a macro-step, several inputs may potentially change. Each macro-step can thus be decomposed in a number of micro-steps, taking one input change at a time into account. This is akin to an interleaving semantics, where a concurrent step is represented by an interleaving of its constituting components. We present criteria on vector-based transition systems, which guarantee that the next state computation is independent of the order in which these micro-steps are executed. If our criteria are satisfied by the semantic definition of a certain specification, then its state-space generation or exploration algorithm needs to only consider one representative among all possible permutations of such micro-steps. We demonstrate the applicability of our criteria to the specification of transistor netlists.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信