采用Nisseki液晶聚合物薄膜对各种液晶模式的视角进行补偿

S. Nishimura, H. Mazaki
{"title":"采用Nisseki液晶聚合物薄膜对各种液晶模式的视角进行补偿","authors":"S. Nishimura, H. Mazaki","doi":"10.1117/12.681705","DOIUrl":null,"url":null,"abstract":"We have developed liquid crystalline retardation films to improve quality of images of LCDs such as their viewing angle performance and coloration. We have achieved to make many types of optical retardation films by using rod-like liquid crystalline polymer (LCP). The resulting liquid crystalline polyesters film has several advantages over conventional uni- or biaxial stretched retardation film. Optical well-controlled structures such as twisted nematic, hybrid nematic and homeotropic structures could be stabilized for ideal compensation of various LCD modes including TN, STN, ECB, VA and IPS modes. Twisted nematic film is effective to cancel coloration in STN mode that is a fatal drawback for color representation. Hybrid nematic film is quite unique film because the film works not only as a wave plate but also as a viewing angle compensator for TN and ECB modes. By using rod-like LCP, it is also possible to make negative-C plate and positive-C plate. Negative-C plate could be realized by using a short pitch cholesteric alignment and positive-C plate could be realized by using homeotropic alignment. Viewing angle performances of various LCD modes compensated with the LCP films are reported in this study.","PeriodicalId":406438,"journal":{"name":"SPIE Optics + Photonics","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Viewing angle compensation of various LCD modes by using a liquid crystalline polymer film Nisseki LC film\",\"authors\":\"S. Nishimura, H. Mazaki\",\"doi\":\"10.1117/12.681705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed liquid crystalline retardation films to improve quality of images of LCDs such as their viewing angle performance and coloration. We have achieved to make many types of optical retardation films by using rod-like liquid crystalline polymer (LCP). The resulting liquid crystalline polyesters film has several advantages over conventional uni- or biaxial stretched retardation film. Optical well-controlled structures such as twisted nematic, hybrid nematic and homeotropic structures could be stabilized for ideal compensation of various LCD modes including TN, STN, ECB, VA and IPS modes. Twisted nematic film is effective to cancel coloration in STN mode that is a fatal drawback for color representation. Hybrid nematic film is quite unique film because the film works not only as a wave plate but also as a viewing angle compensator for TN and ECB modes. By using rod-like LCP, it is also possible to make negative-C plate and positive-C plate. Negative-C plate could be realized by using a short pitch cholesteric alignment and positive-C plate could be realized by using homeotropic alignment. Viewing angle performances of various LCD modes compensated with the LCP films are reported in this study.\",\"PeriodicalId\":406438,\"journal\":{\"name\":\"SPIE Optics + Photonics\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Optics + Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.681705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optics + Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.681705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们开发了液晶延迟膜,以改善lcd的图像质量,如其视角性能和色彩。利用棒状液晶聚合物(LCP)制备了多种类型的光学缓速膜。所制备的液晶聚酯薄膜与传统的单轴或双轴拉伸缓阻膜相比,具有许多优点。扭曲向列、混合向列和同向同性等光学良好控制结构可以稳定地补偿包括TN、STN、ECB、VA和IPS模式在内的各种LCD模式。扭曲向列膜可以有效地消除STN模式下的着色,这是颜色表示的致命缺陷。混合向列膜是一种非常独特的薄膜,因为它不仅可以作为波片,还可以作为TN和ECB模式的视角补偿器。通过棒状LCP,还可以制作负c板和正c板。负c板可采用短节距胆甾取向,正c板可采用同向异性取向。本文报道了用LCP薄膜补偿不同液晶模式的视角性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Viewing angle compensation of various LCD modes by using a liquid crystalline polymer film Nisseki LC film
We have developed liquid crystalline retardation films to improve quality of images of LCDs such as their viewing angle performance and coloration. We have achieved to make many types of optical retardation films by using rod-like liquid crystalline polymer (LCP). The resulting liquid crystalline polyesters film has several advantages over conventional uni- or biaxial stretched retardation film. Optical well-controlled structures such as twisted nematic, hybrid nematic and homeotropic structures could be stabilized for ideal compensation of various LCD modes including TN, STN, ECB, VA and IPS modes. Twisted nematic film is effective to cancel coloration in STN mode that is a fatal drawback for color representation. Hybrid nematic film is quite unique film because the film works not only as a wave plate but also as a viewing angle compensator for TN and ECB modes. By using rod-like LCP, it is also possible to make negative-C plate and positive-C plate. Negative-C plate could be realized by using a short pitch cholesteric alignment and positive-C plate could be realized by using homeotropic alignment. Viewing angle performances of various LCD modes compensated with the LCP films are reported in this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信