自适应网页指纹从TLS痕迹

V. Mavroudis, Jamie Hayes
{"title":"自适应网页指纹从TLS痕迹","authors":"V. Mavroudis, Jamie Hayes","doi":"10.1109/DSN58367.2023.00049","DOIUrl":null,"url":null,"abstract":"In webpage fingerprinting, an on-path adversary infers the specific webpage loaded by a victim user by analysing the patterns in the encrypted TLS traffic exchanged between the user's browser and the website's servers. This work studies modern webpage fingerprinting adversaries against the TLS protocol; aiming to shed light on their capabilities and inform potential defences. Despite the importance of this research area (the majority of global Internet users rely on standard web browsing with TLS) and the potential real-life impact, most past works have focused on attacks specific to anonymity networks (e.g., Tor). We introduce a TLS-specific model that: 1) scales to an unprecedented number of target webpages, 2) can accurately classify thousands of classes it never encountered during training, and 3) has low operational costs even in scenarios of frequent page updates. Based on these findings, we then discuss TLS-specific countermeasures and evaluate the effectiveness of the existing padding capabilities provided by TLS 1.3.","PeriodicalId":427725,"journal":{"name":"2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Webpage Fingerprinting from TLS Traces\",\"authors\":\"V. Mavroudis, Jamie Hayes\",\"doi\":\"10.1109/DSN58367.2023.00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In webpage fingerprinting, an on-path adversary infers the specific webpage loaded by a victim user by analysing the patterns in the encrypted TLS traffic exchanged between the user's browser and the website's servers. This work studies modern webpage fingerprinting adversaries against the TLS protocol; aiming to shed light on their capabilities and inform potential defences. Despite the importance of this research area (the majority of global Internet users rely on standard web browsing with TLS) and the potential real-life impact, most past works have focused on attacks specific to anonymity networks (e.g., Tor). We introduce a TLS-specific model that: 1) scales to an unprecedented number of target webpages, 2) can accurately classify thousands of classes it never encountered during training, and 3) has low operational costs even in scenarios of frequent page updates. Based on these findings, we then discuss TLS-specific countermeasures and evaluate the effectiveness of the existing padding capabilities provided by TLS 1.3.\",\"PeriodicalId\":427725,\"journal\":{\"name\":\"2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSN58367.2023.00049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN58367.2023.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在网页指纹识别中,路径上的攻击者通过分析用户浏览器和网站服务器之间交换的加密TLS流量中的模式来推断受害者用户加载的特定网页。本文研究了针对TLS协议的现代网页指纹攻击;目的是揭示他们的能力,为潜在的防御提供信息。尽管这一研究领域的重要性(全球大多数互联网用户依赖于使用TLS的标准网页浏览)和潜在的现实影响,但大多数过去的工作都集中在针对匿名网络(例如Tor)的攻击上。我们引入了一个特定于tls的模型,它可以:1)扩展到前所未有的目标网页数量,2)可以准确地对训练中从未遇到的数千个类进行分类,3)即使在频繁页面更新的情况下也具有较低的操作成本。基于这些发现,我们讨论了特定于TLS的对策,并评估了TLS 1.3提供的现有填充功能的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Webpage Fingerprinting from TLS Traces
In webpage fingerprinting, an on-path adversary infers the specific webpage loaded by a victim user by analysing the patterns in the encrypted TLS traffic exchanged between the user's browser and the website's servers. This work studies modern webpage fingerprinting adversaries against the TLS protocol; aiming to shed light on their capabilities and inform potential defences. Despite the importance of this research area (the majority of global Internet users rely on standard web browsing with TLS) and the potential real-life impact, most past works have focused on attacks specific to anonymity networks (e.g., Tor). We introduce a TLS-specific model that: 1) scales to an unprecedented number of target webpages, 2) can accurately classify thousands of classes it never encountered during training, and 3) has low operational costs even in scenarios of frequent page updates. Based on these findings, we then discuss TLS-specific countermeasures and evaluate the effectiveness of the existing padding capabilities provided by TLS 1.3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信