一种增量噪声约束最小均方算法

Usman Hameed, S. G. Khawaja, M. O. B. Saeed
{"title":"一种增量噪声约束最小均方算法","authors":"Usman Hameed, S. G. Khawaja, M. O. B. Saeed","doi":"10.1109/icfsp48124.2019.8938040","DOIUrl":null,"url":null,"abstract":"This work proposes a distributed estimation algorithm for wireless sensor network, based on the incremental scheme. The proposed algorithm utilizes the noise variance in order to improve performance. The derivation and mean analysis are shown. The mean analysis of the algorithm is performed which show the range of step size and the stability of the algorithm. Under different scenarios experimental results show the superiority of the proposed algorithm.","PeriodicalId":162584,"journal":{"name":"2019 5th International Conference on Frontiers of Signal Processing (ICFSP)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Incremental Noise Constrained Least Mean Square Algorithm\",\"authors\":\"Usman Hameed, S. G. Khawaja, M. O. B. Saeed\",\"doi\":\"10.1109/icfsp48124.2019.8938040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a distributed estimation algorithm for wireless sensor network, based on the incremental scheme. The proposed algorithm utilizes the noise variance in order to improve performance. The derivation and mean analysis are shown. The mean analysis of the algorithm is performed which show the range of step size and the stability of the algorithm. Under different scenarios experimental results show the superiority of the proposed algorithm.\",\"PeriodicalId\":162584,\"journal\":{\"name\":\"2019 5th International Conference on Frontiers of Signal Processing (ICFSP)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 5th International Conference on Frontiers of Signal Processing (ICFSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icfsp48124.2019.8938040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Frontiers of Signal Processing (ICFSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icfsp48124.2019.8938040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于增量算法的无线传感器网络分布式估计算法。该算法利用噪声方差来提高性能。给出了推导和均值分析。对算法进行均值分析,证明了算法的步长范围和稳定性。在不同场景下的实验结果表明了该算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Incremental Noise Constrained Least Mean Square Algorithm
This work proposes a distributed estimation algorithm for wireless sensor network, based on the incremental scheme. The proposed algorithm utilizes the noise variance in order to improve performance. The derivation and mean analysis are shown. The mean analysis of the algorithm is performed which show the range of step size and the stability of the algorithm. Under different scenarios experimental results show the superiority of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信