曲线网格上的小波

G. Nielson, Il-Hong Jung, J. Sung
{"title":"曲线网格上的小波","authors":"G. Nielson, Il-Hong Jung, J. Sung","doi":"10.1109/VISUAL.1998.745318","DOIUrl":null,"url":null,"abstract":"We develop multiresolution models for analyzing and visualizing two-dimensional flows over curvilinear grids. Our models are based upon nested spaces of piecewise defined functions defined over nested curvilinear grid domains. The nested domains are selected so as to maintain the original geometry of the inner boundary. We first give the refinement and decomposition equations for Haar wavelets over these domains. Next, using lifting techniques we develop and show examples of piecewise linear wavelets over curvilinear grids.","PeriodicalId":399113,"journal":{"name":"Proceedings Visualization '98 (Cat. No.98CB36276)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Wavelets over curvilinear grids\",\"authors\":\"G. Nielson, Il-Hong Jung, J. Sung\",\"doi\":\"10.1109/VISUAL.1998.745318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop multiresolution models for analyzing and visualizing two-dimensional flows over curvilinear grids. Our models are based upon nested spaces of piecewise defined functions defined over nested curvilinear grid domains. The nested domains are selected so as to maintain the original geometry of the inner boundary. We first give the refinement and decomposition equations for Haar wavelets over these domains. Next, using lifting techniques we develop and show examples of piecewise linear wavelets over curvilinear grids.\",\"PeriodicalId\":399113,\"journal\":{\"name\":\"Proceedings Visualization '98 (Cat. No.98CB36276)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Visualization '98 (Cat. No.98CB36276)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VISUAL.1998.745318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Visualization '98 (Cat. No.98CB36276)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.1998.745318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

我们开发了多分辨率模型来分析和可视化曲线网格上的二维流动。我们的模型基于分段定义函数的嵌套空间,这些函数定义在嵌套的曲线网格域上。选择嵌套域以保持内边界的原始几何形状。我们首先给出了这些域上哈尔小波的细化和分解方程。接下来,使用提升技术,我们开发并展示了分段线性小波在曲线网格上的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavelets over curvilinear grids
We develop multiresolution models for analyzing and visualizing two-dimensional flows over curvilinear grids. Our models are based upon nested spaces of piecewise defined functions defined over nested curvilinear grid domains. The nested domains are selected so as to maintain the original geometry of the inner boundary. We first give the refinement and decomposition equations for Haar wavelets over these domains. Next, using lifting techniques we develop and show examples of piecewise linear wavelets over curvilinear grids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信