体外crispr介导的γ -珠蛋白基因在HEK293中的激活

Ana Claudia Samaniego Villacis, Mauro Berta Ramasko, Laura Richmond, A. West
{"title":"体外crispr介导的γ -珠蛋白基因在HEK293中的激活","authors":"Ana Claudia Samaniego Villacis, Mauro Berta Ramasko, Laura Richmond, A. West","doi":"10.3390/mol2net-05-06384","DOIUrl":null,"url":null,"abstract":"Blood disorders like B-thalassemia or sickle cell anaemia obligate patients to require constant blood transfusions. These, among others, make blood a highly demanded resource in the medical field. Blood has been obtained from in-vitro erythroid differentiation from embryonic stem cells or induced pluripotent stem cells, but this blood tends to produce embryonic haemoglobin. In this project, we aim to use a CRISPR/Cas9 modified version and an aptamer approach to alter the expression of the β-globin locus upregulating the gamma globin gene to produce foetal haemoglobin. Guide vectors were created targeting previously known sequences in the gamma haemoglobin gene. HEK cells were transfected with different combinations of CRISPR/Cas9 elements, as well as different combinations of aptamers/effectors, to test the amount of gene activation achieved. Gene expression analysis was performed through RTq/PCR. It was found that HbG activation can be achieved to some extent, however, the levels of gamma haemoglobin attained are very low compared with the normal levels of HbG expressed in other cell lines like K562. From the different grouping of vectors (dCas9 protein + aptamer/coating protein + activation effectors) tested, the combination of dCas9ES + PP7/PCP + VPH presented the best performance. References Basak, Anindita, and Vijay G. Sankaran. 2016. “Regulation of the Fetal Hemoglobin Silencing Factor BCL11A.” Annals of the New York Academy of Sciences 1368 (1): 25–30. doi:10.1111/nyas.13024. Borg, Joseph, Petros Papadopoulos, Marianthi Georgitsi, Laura Gutiérrez, Godfrey Grech, Pavlos Fanis, Marios Phylactides, et al. 2010. “Haploinsufficiency for the Erythroid Transcription Factor KLF1 Causes Hereditary Persistence of Fetal Hemoglobin.” Nature Genetics 42 (9): 801–5. doi:10.1038/ng.630. MOL2NET, 2019, 5, ISSN: 2624-5078 2 http://sciforum.net/conference/mol2net-05 Chavez, Alejandro, Marcelle Tuttle, Benjamin W. Pruitt, Ben Ewen-Campen, Raj Chari, Dmitry TerOvanesyan, Sabina J. Haque, et al. 2016. “Comparison of Cas9 Activators in Multiple Species.” Nature Methods 13 (7): 563–67. doi:10.1038/nmeth.3871. Chen, Baohui, Luke A. Gilbert, Beth A. Cimini, Joerg Schnitzbauer, Wei Zhang, Gene-Wei Li, Jason Park, et al. 2013. “Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System.” Cell 155 (7): 1479–91. doi:10.1016/j.cell.2013.12.001. Dominguez, Antonia A., Wendell A. Lim, and Lei S. Qi. 2016. “Beyond Editing: Repurposing CRISPR–Cas9 for Precision Genome Regulation and Interrogation.” Nature Reviews. Molecular Cell Biology 17 (1): 5–15. doi:10.1038/nrm.2015.2. Forget, Bernard G., and H. Franklin Bunn. 2013. “Classification of the Disorders of Hemoglobin.” Cold Spring Harbor Perspectives in Medicine 3 (2). doi:10.1101/cshperspect.a011684. Gilbert, Luke A., Matthew H. Larson, Leonardo Morsut, Zairan Liu, Gloria A. Brar, Sandra E. Torres, Noam Stern-Ginossar, et al. 2013. “CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes.” Cell 154 (2): 442–51. doi:10.1016/j.cell.2013.06.044. Hardwick, J. M., L. Tse, N. Applegren, J. Nicholas, and M. A. Veliuona. 1992. “The Epstein-Barr Virus R Transactivator (Rta) Contains a Complex, Potent Activation Domain with Properties Different from Those of VP16.” Journal of Virology 66 (9): 5500–5508. Konermann, Silvana, Mark D. Brigham, Alexandro E. Trevino, Julia Joung, Omar O. Abudayyeh, Clea Barcena, Patrick D. Hsu, et al. 2014a. “Genome-Scale Transcriptional Activation by an Engineered CRISPR-Cas9 Complex.” Nature 517 (7536). Nature Publishing Group: 583–88. doi:10.1038/nature14136. ———. 2014b. “Genome-Scale Transcriptional Activation by an Engineered CRISPR-Cas9 Complex.” Nature 517 (7536): 583–88. doi:10.1038/nature14136. Ma, Hanhui, Li-Chun Tu, Ardalan Naseri, Maximiliaan Huisman, Shaojie Zhang, David Grunwald, and Thoru Pederson. 2016. “Multiplexed Labeling of Genomic Loci with DCas9 and Engineered SgRNAs Using CRISPRainbow.” Nature Biotechnology 34 (5): 528–30. doi:10.1038/nbt.3526. Sander, Jeffry D., and J. Keith Joung. 2014. “CRISPR-Cas Systems for Editing, Regulating and Targeting Genomes.” Nature Biotechnology 32 (4): 347–55. doi:10.1038/nbt.2842. Slaymaker, Ian M., Linyi Gao, Bernd Zetsche, David A. Scott, Winston X. Yan, and Feng Zhang. 2016. “Rationally Engineered Cas9 Nucleases with Improved Specificity.” Science (New York, N.Y.) 351 (6268): 84–88. doi:10.1126/science.aad5227. Vora, Suhani, Marcelle Tuttle, Jenny Cheng, and George Church. 2016. “Next Stop for the CRISPR Revolution: RNA-Guided Epigenetic Regulators.” The FEBS Journal 283 (17): 3181–93. doi:10.1111/febs.13768. Wilber, Andrew, Arthur W. Nienhuis, and Derek A. Persons. 2011. “Transcriptional Regulation of Fetal to Adult Hemoglobin Switching: New Therapeutic Opportunities.” Blood 117 (15): 3945–53. doi:10.1182/blood-2010-11-316893. Wiles, Michael V., Wenning Qin, Albert W. Cheng, and Haoyi Wang. 2015. “CRISPR-Cas9-Mediated Genome Editing and Guide RNA Design.” Mammalian Genome: Official Journal of the International Mammalian Genome Society 26 (9–10): 501–10. doi:10.1007/s00335-015-9565-z. Xu, Jian, Vijay G. Sankaran, Min Ni, Tobias F. Menne, Rishi V. Puram, Woojin Kim, and Stuart H. Orkin. 2010. “Transcriptional Silencing of γ-Globin by BCL11A Involves Long-Range Interactions and Cooperation with SOX6.” Genes & Development 24 (8): 783–98. doi:10.1101/gad.1897310.","PeriodicalId":337320,"journal":{"name":"Proceedings of MOL2NET 2019, International Conference on Multidisciplinary Sciences, 5th edition","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vitro CRISPR-mediated gamma globin gene activation in HEK293\",\"authors\":\"Ana Claudia Samaniego Villacis, Mauro Berta Ramasko, Laura Richmond, A. West\",\"doi\":\"10.3390/mol2net-05-06384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blood disorders like B-thalassemia or sickle cell anaemia obligate patients to require constant blood transfusions. These, among others, make blood a highly demanded resource in the medical field. Blood has been obtained from in-vitro erythroid differentiation from embryonic stem cells or induced pluripotent stem cells, but this blood tends to produce embryonic haemoglobin. In this project, we aim to use a CRISPR/Cas9 modified version and an aptamer approach to alter the expression of the β-globin locus upregulating the gamma globin gene to produce foetal haemoglobin. Guide vectors were created targeting previously known sequences in the gamma haemoglobin gene. HEK cells were transfected with different combinations of CRISPR/Cas9 elements, as well as different combinations of aptamers/effectors, to test the amount of gene activation achieved. Gene expression analysis was performed through RTq/PCR. It was found that HbG activation can be achieved to some extent, however, the levels of gamma haemoglobin attained are very low compared with the normal levels of HbG expressed in other cell lines like K562. From the different grouping of vectors (dCas9 protein + aptamer/coating protein + activation effectors) tested, the combination of dCas9ES + PP7/PCP + VPH presented the best performance. References Basak, Anindita, and Vijay G. Sankaran. 2016. “Regulation of the Fetal Hemoglobin Silencing Factor BCL11A.” Annals of the New York Academy of Sciences 1368 (1): 25–30. doi:10.1111/nyas.13024. Borg, Joseph, Petros Papadopoulos, Marianthi Georgitsi, Laura Gutiérrez, Godfrey Grech, Pavlos Fanis, Marios Phylactides, et al. 2010. “Haploinsufficiency for the Erythroid Transcription Factor KLF1 Causes Hereditary Persistence of Fetal Hemoglobin.” Nature Genetics 42 (9): 801–5. doi:10.1038/ng.630. MOL2NET, 2019, 5, ISSN: 2624-5078 2 http://sciforum.net/conference/mol2net-05 Chavez, Alejandro, Marcelle Tuttle, Benjamin W. Pruitt, Ben Ewen-Campen, Raj Chari, Dmitry TerOvanesyan, Sabina J. Haque, et al. 2016. “Comparison of Cas9 Activators in Multiple Species.” Nature Methods 13 (7): 563–67. doi:10.1038/nmeth.3871. Chen, Baohui, Luke A. Gilbert, Beth A. Cimini, Joerg Schnitzbauer, Wei Zhang, Gene-Wei Li, Jason Park, et al. 2013. “Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System.” Cell 155 (7): 1479–91. doi:10.1016/j.cell.2013.12.001. Dominguez, Antonia A., Wendell A. Lim, and Lei S. Qi. 2016. “Beyond Editing: Repurposing CRISPR–Cas9 for Precision Genome Regulation and Interrogation.” Nature Reviews. Molecular Cell Biology 17 (1): 5–15. doi:10.1038/nrm.2015.2. Forget, Bernard G., and H. Franklin Bunn. 2013. “Classification of the Disorders of Hemoglobin.” Cold Spring Harbor Perspectives in Medicine 3 (2). doi:10.1101/cshperspect.a011684. Gilbert, Luke A., Matthew H. Larson, Leonardo Morsut, Zairan Liu, Gloria A. Brar, Sandra E. Torres, Noam Stern-Ginossar, et al. 2013. “CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes.” Cell 154 (2): 442–51. doi:10.1016/j.cell.2013.06.044. Hardwick, J. M., L. Tse, N. Applegren, J. Nicholas, and M. A. Veliuona. 1992. “The Epstein-Barr Virus R Transactivator (Rta) Contains a Complex, Potent Activation Domain with Properties Different from Those of VP16.” Journal of Virology 66 (9): 5500–5508. Konermann, Silvana, Mark D. Brigham, Alexandro E. Trevino, Julia Joung, Omar O. Abudayyeh, Clea Barcena, Patrick D. Hsu, et al. 2014a. “Genome-Scale Transcriptional Activation by an Engineered CRISPR-Cas9 Complex.” Nature 517 (7536). Nature Publishing Group: 583–88. doi:10.1038/nature14136. ———. 2014b. “Genome-Scale Transcriptional Activation by an Engineered CRISPR-Cas9 Complex.” Nature 517 (7536): 583–88. doi:10.1038/nature14136. Ma, Hanhui, Li-Chun Tu, Ardalan Naseri, Maximiliaan Huisman, Shaojie Zhang, David Grunwald, and Thoru Pederson. 2016. “Multiplexed Labeling of Genomic Loci with DCas9 and Engineered SgRNAs Using CRISPRainbow.” Nature Biotechnology 34 (5): 528–30. doi:10.1038/nbt.3526. Sander, Jeffry D., and J. Keith Joung. 2014. “CRISPR-Cas Systems for Editing, Regulating and Targeting Genomes.” Nature Biotechnology 32 (4): 347–55. doi:10.1038/nbt.2842. Slaymaker, Ian M., Linyi Gao, Bernd Zetsche, David A. Scott, Winston X. Yan, and Feng Zhang. 2016. “Rationally Engineered Cas9 Nucleases with Improved Specificity.” Science (New York, N.Y.) 351 (6268): 84–88. doi:10.1126/science.aad5227. Vora, Suhani, Marcelle Tuttle, Jenny Cheng, and George Church. 2016. “Next Stop for the CRISPR Revolution: RNA-Guided Epigenetic Regulators.” The FEBS Journal 283 (17): 3181–93. doi:10.1111/febs.13768. Wilber, Andrew, Arthur W. Nienhuis, and Derek A. Persons. 2011. “Transcriptional Regulation of Fetal to Adult Hemoglobin Switching: New Therapeutic Opportunities.” Blood 117 (15): 3945–53. doi:10.1182/blood-2010-11-316893. Wiles, Michael V., Wenning Qin, Albert W. Cheng, and Haoyi Wang. 2015. “CRISPR-Cas9-Mediated Genome Editing and Guide RNA Design.” Mammalian Genome: Official Journal of the International Mammalian Genome Society 26 (9–10): 501–10. doi:10.1007/s00335-015-9565-z. Xu, Jian, Vijay G. Sankaran, Min Ni, Tobias F. Menne, Rishi V. Puram, Woojin Kim, and Stuart H. Orkin. 2010. “Transcriptional Silencing of γ-Globin by BCL11A Involves Long-Range Interactions and Cooperation with SOX6.” Genes & Development 24 (8): 783–98. doi:10.1101/gad.1897310.\",\"PeriodicalId\":337320,\"journal\":{\"name\":\"Proceedings of MOL2NET 2019, International Conference on Multidisciplinary Sciences, 5th edition\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of MOL2NET 2019, International Conference on Multidisciplinary Sciences, 5th edition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mol2net-05-06384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of MOL2NET 2019, International Conference on Multidisciplinary Sciences, 5th edition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mol2net-05-06384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

哺乳动物基因组:国际哺乳动物基因组学会官方杂志26(9-10):501-10。doi: 10.1007 / s00335 - 015 - 9565 - z。徐健,Vijay G. Sankaran, minni, Tobias F. Menne, Rishi V. Puram, Woojin Kim, Stuart H. Orkin。2010。“BCL11A对γ-球蛋白的转录沉默涉及与SOX6的远程相互作用和合作。”基因工程学报,24(8):783 - 798。doi: 10.1101 / gad.1897310。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In vitro CRISPR-mediated gamma globin gene activation in HEK293
Blood disorders like B-thalassemia or sickle cell anaemia obligate patients to require constant blood transfusions. These, among others, make blood a highly demanded resource in the medical field. Blood has been obtained from in-vitro erythroid differentiation from embryonic stem cells or induced pluripotent stem cells, but this blood tends to produce embryonic haemoglobin. In this project, we aim to use a CRISPR/Cas9 modified version and an aptamer approach to alter the expression of the β-globin locus upregulating the gamma globin gene to produce foetal haemoglobin. Guide vectors were created targeting previously known sequences in the gamma haemoglobin gene. HEK cells were transfected with different combinations of CRISPR/Cas9 elements, as well as different combinations of aptamers/effectors, to test the amount of gene activation achieved. Gene expression analysis was performed through RTq/PCR. It was found that HbG activation can be achieved to some extent, however, the levels of gamma haemoglobin attained are very low compared with the normal levels of HbG expressed in other cell lines like K562. From the different grouping of vectors (dCas9 protein + aptamer/coating protein + activation effectors) tested, the combination of dCas9ES + PP7/PCP + VPH presented the best performance. References Basak, Anindita, and Vijay G. Sankaran. 2016. “Regulation of the Fetal Hemoglobin Silencing Factor BCL11A.” Annals of the New York Academy of Sciences 1368 (1): 25–30. doi:10.1111/nyas.13024. Borg, Joseph, Petros Papadopoulos, Marianthi Georgitsi, Laura Gutiérrez, Godfrey Grech, Pavlos Fanis, Marios Phylactides, et al. 2010. “Haploinsufficiency for the Erythroid Transcription Factor KLF1 Causes Hereditary Persistence of Fetal Hemoglobin.” Nature Genetics 42 (9): 801–5. doi:10.1038/ng.630. MOL2NET, 2019, 5, ISSN: 2624-5078 2 http://sciforum.net/conference/mol2net-05 Chavez, Alejandro, Marcelle Tuttle, Benjamin W. Pruitt, Ben Ewen-Campen, Raj Chari, Dmitry TerOvanesyan, Sabina J. Haque, et al. 2016. “Comparison of Cas9 Activators in Multiple Species.” Nature Methods 13 (7): 563–67. doi:10.1038/nmeth.3871. Chen, Baohui, Luke A. Gilbert, Beth A. Cimini, Joerg Schnitzbauer, Wei Zhang, Gene-Wei Li, Jason Park, et al. 2013. “Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System.” Cell 155 (7): 1479–91. doi:10.1016/j.cell.2013.12.001. Dominguez, Antonia A., Wendell A. Lim, and Lei S. Qi. 2016. “Beyond Editing: Repurposing CRISPR–Cas9 for Precision Genome Regulation and Interrogation.” Nature Reviews. Molecular Cell Biology 17 (1): 5–15. doi:10.1038/nrm.2015.2. Forget, Bernard G., and H. Franklin Bunn. 2013. “Classification of the Disorders of Hemoglobin.” Cold Spring Harbor Perspectives in Medicine 3 (2). doi:10.1101/cshperspect.a011684. Gilbert, Luke A., Matthew H. Larson, Leonardo Morsut, Zairan Liu, Gloria A. Brar, Sandra E. Torres, Noam Stern-Ginossar, et al. 2013. “CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes.” Cell 154 (2): 442–51. doi:10.1016/j.cell.2013.06.044. Hardwick, J. M., L. Tse, N. Applegren, J. Nicholas, and M. A. Veliuona. 1992. “The Epstein-Barr Virus R Transactivator (Rta) Contains a Complex, Potent Activation Domain with Properties Different from Those of VP16.” Journal of Virology 66 (9): 5500–5508. Konermann, Silvana, Mark D. Brigham, Alexandro E. Trevino, Julia Joung, Omar O. Abudayyeh, Clea Barcena, Patrick D. Hsu, et al. 2014a. “Genome-Scale Transcriptional Activation by an Engineered CRISPR-Cas9 Complex.” Nature 517 (7536). Nature Publishing Group: 583–88. doi:10.1038/nature14136. ———. 2014b. “Genome-Scale Transcriptional Activation by an Engineered CRISPR-Cas9 Complex.” Nature 517 (7536): 583–88. doi:10.1038/nature14136. Ma, Hanhui, Li-Chun Tu, Ardalan Naseri, Maximiliaan Huisman, Shaojie Zhang, David Grunwald, and Thoru Pederson. 2016. “Multiplexed Labeling of Genomic Loci with DCas9 and Engineered SgRNAs Using CRISPRainbow.” Nature Biotechnology 34 (5): 528–30. doi:10.1038/nbt.3526. Sander, Jeffry D., and J. Keith Joung. 2014. “CRISPR-Cas Systems for Editing, Regulating and Targeting Genomes.” Nature Biotechnology 32 (4): 347–55. doi:10.1038/nbt.2842. Slaymaker, Ian M., Linyi Gao, Bernd Zetsche, David A. Scott, Winston X. Yan, and Feng Zhang. 2016. “Rationally Engineered Cas9 Nucleases with Improved Specificity.” Science (New York, N.Y.) 351 (6268): 84–88. doi:10.1126/science.aad5227. Vora, Suhani, Marcelle Tuttle, Jenny Cheng, and George Church. 2016. “Next Stop for the CRISPR Revolution: RNA-Guided Epigenetic Regulators.” The FEBS Journal 283 (17): 3181–93. doi:10.1111/febs.13768. Wilber, Andrew, Arthur W. Nienhuis, and Derek A. Persons. 2011. “Transcriptional Regulation of Fetal to Adult Hemoglobin Switching: New Therapeutic Opportunities.” Blood 117 (15): 3945–53. doi:10.1182/blood-2010-11-316893. Wiles, Michael V., Wenning Qin, Albert W. Cheng, and Haoyi Wang. 2015. “CRISPR-Cas9-Mediated Genome Editing and Guide RNA Design.” Mammalian Genome: Official Journal of the International Mammalian Genome Society 26 (9–10): 501–10. doi:10.1007/s00335-015-9565-z. Xu, Jian, Vijay G. Sankaran, Min Ni, Tobias F. Menne, Rishi V. Puram, Woojin Kim, and Stuart H. Orkin. 2010. “Transcriptional Silencing of γ-Globin by BCL11A Involves Long-Range Interactions and Cooperation with SOX6.” Genes & Development 24 (8): 783–98. doi:10.1101/gad.1897310.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信