基于kdn数据中心的神经网络负载均衡方法

Alex M. R. Ruelas, Christian Esteve Rothenberg
{"title":"基于kdn数据中心的神经网络负载均衡方法","authors":"Alex M. R. Ruelas, Christian Esteve Rothenberg","doi":"10.26439/ciis2018.5481","DOIUrl":null,"url":null,"abstract":"The growth of cloud application services delivered through data centers with varying traffic demands unveils limitations of traditional load balancing methods. Aiming to attend evolving scenarios and improve the overall network performance, this paper proposes a load balancing method based on an Artificial Neural Network (ANN) in the context of Knowledge-Defined Networking (KDN). KDN seeks to leverage Artificial Intelligence (AI) techniques for the control and operation of computer networks. KDN extends Software-Defined Networking (SDN) with advanced telemetry and network analytics introducing a so-called Knowledge Plane. The ANN is capable of predicting the network performance according to traffic parameters paths. The method includes training the ANN model to choose the path with least load. The experimental results show that the performance of the KDN-based data center has been greatly improved.","PeriodicalId":193074,"journal":{"name":"CIIS Ulima Congreso Internacional de Ingeniería de Sistemas","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Load balancing method for KDN-based data center using neural network\",\"authors\":\"Alex M. R. Ruelas, Christian Esteve Rothenberg\",\"doi\":\"10.26439/ciis2018.5481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growth of cloud application services delivered through data centers with varying traffic demands unveils limitations of traditional load balancing methods. Aiming to attend evolving scenarios and improve the overall network performance, this paper proposes a load balancing method based on an Artificial Neural Network (ANN) in the context of Knowledge-Defined Networking (KDN). KDN seeks to leverage Artificial Intelligence (AI) techniques for the control and operation of computer networks. KDN extends Software-Defined Networking (SDN) with advanced telemetry and network analytics introducing a so-called Knowledge Plane. The ANN is capable of predicting the network performance according to traffic parameters paths. The method includes training the ANN model to choose the path with least load. The experimental results show that the performance of the KDN-based data center has been greatly improved.\",\"PeriodicalId\":193074,\"journal\":{\"name\":\"CIIS Ulima Congreso Internacional de Ingeniería de Sistemas\",\"volume\":\"168 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CIIS Ulima Congreso Internacional de Ingeniería de Sistemas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26439/ciis2018.5481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIIS Ulima Congreso Internacional de Ingeniería de Sistemas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26439/ciis2018.5481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过具有不同流量需求的数据中心交付的云应用服务的增长揭示了传统负载平衡方法的局限性。为了适应不断变化的场景,提高网络的整体性能,提出了一种基于知识定义网络(KDN)的人工神经网络(ANN)负载均衡方法。KDN寻求利用人工智能(AI)技术来控制和操作计算机网络。KDN扩展了软件定义网络(SDN),采用了先进的遥测技术和网络分析技术,引入了所谓的知识平面。人工神经网络能够根据流量参数路径预测网络性能。该方法包括训练人工神经网络模型选择负载最小的路径。实验结果表明,基于kdn的数据中心的性能有了很大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Load balancing method for KDN-based data center using neural network
The growth of cloud application services delivered through data centers with varying traffic demands unveils limitations of traditional load balancing methods. Aiming to attend evolving scenarios and improve the overall network performance, this paper proposes a load balancing method based on an Artificial Neural Network (ANN) in the context of Knowledge-Defined Networking (KDN). KDN seeks to leverage Artificial Intelligence (AI) techniques for the control and operation of computer networks. KDN extends Software-Defined Networking (SDN) with advanced telemetry and network analytics introducing a so-called Knowledge Plane. The ANN is capable of predicting the network performance according to traffic parameters paths. The method includes training the ANN model to choose the path with least load. The experimental results show that the performance of the KDN-based data center has been greatly improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信