{"title":"基于kdn数据中心的神经网络负载均衡方法","authors":"Alex M. R. Ruelas, Christian Esteve Rothenberg","doi":"10.26439/ciis2018.5481","DOIUrl":null,"url":null,"abstract":"The growth of cloud application services delivered through data centers with varying traffic demands unveils limitations of traditional load balancing methods. Aiming to attend evolving scenarios and improve the overall network performance, this paper proposes a load balancing method based on an Artificial Neural Network (ANN) in the context of Knowledge-Defined Networking (KDN). KDN seeks to leverage Artificial Intelligence (AI) techniques for the control and operation of computer networks. KDN extends Software-Defined Networking (SDN) with advanced telemetry and network analytics introducing a so-called Knowledge Plane. The ANN is capable of predicting the network performance according to traffic parameters paths. The method includes training the ANN model to choose the path with least load. The experimental results show that the performance of the KDN-based data center has been greatly improved.","PeriodicalId":193074,"journal":{"name":"CIIS Ulima Congreso Internacional de Ingeniería de Sistemas","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Load balancing method for KDN-based data center using neural network\",\"authors\":\"Alex M. R. Ruelas, Christian Esteve Rothenberg\",\"doi\":\"10.26439/ciis2018.5481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growth of cloud application services delivered through data centers with varying traffic demands unveils limitations of traditional load balancing methods. Aiming to attend evolving scenarios and improve the overall network performance, this paper proposes a load balancing method based on an Artificial Neural Network (ANN) in the context of Knowledge-Defined Networking (KDN). KDN seeks to leverage Artificial Intelligence (AI) techniques for the control and operation of computer networks. KDN extends Software-Defined Networking (SDN) with advanced telemetry and network analytics introducing a so-called Knowledge Plane. The ANN is capable of predicting the network performance according to traffic parameters paths. The method includes training the ANN model to choose the path with least load. The experimental results show that the performance of the KDN-based data center has been greatly improved.\",\"PeriodicalId\":193074,\"journal\":{\"name\":\"CIIS Ulima Congreso Internacional de Ingeniería de Sistemas\",\"volume\":\"168 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CIIS Ulima Congreso Internacional de Ingeniería de Sistemas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26439/ciis2018.5481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIIS Ulima Congreso Internacional de Ingeniería de Sistemas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26439/ciis2018.5481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Load balancing method for KDN-based data center using neural network
The growth of cloud application services delivered through data centers with varying traffic demands unveils limitations of traditional load balancing methods. Aiming to attend evolving scenarios and improve the overall network performance, this paper proposes a load balancing method based on an Artificial Neural Network (ANN) in the context of Knowledge-Defined Networking (KDN). KDN seeks to leverage Artificial Intelligence (AI) techniques for the control and operation of computer networks. KDN extends Software-Defined Networking (SDN) with advanced telemetry and network analytics introducing a so-called Knowledge Plane. The ANN is capable of predicting the network performance according to traffic parameters paths. The method includes training the ANN model to choose the path with least load. The experimental results show that the performance of the KDN-based data center has been greatly improved.