{"title":"基于k均值聚类的网络异构容错数据快速挖掘方法","authors":"Haiyang Huang, Zhanlei Shang","doi":"10.3233/web-210460","DOIUrl":null,"url":null,"abstract":"In the traditional network heterogeneous fault-tolerant data mining process, there are some problems such as low accuracy and slow speed. This paper proposes a fast mining method based on K-means clustering for network heterogeneous fault-tolerant data. The confidence space of heterogeneous fault-tolerant data is determined, and the range of motion of fault-tolerant data is obtained; Singular value decomposition (SVD) method is used to construct the classified data model to obtain the characteristics of heterogeneous fault-tolerant data; The redundant data in fault-tolerant data is deleted by unsupervised feature selection algorithm, and the square sum and Euclidean distance of fault-tolerant data clustering center are determined by K-means algorithm. The discrete data clustering space is constructed, and the objective optimal function of network heterogeneous fault-tolerant data clustering is obtained, Realize fault-tolerant data fast mining. The results show that the mining accuracy of the proposed method can reach 97%.","PeriodicalId":245783,"journal":{"name":"Web Intell.","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast mining method of network heterogeneous fault tolerant data based on K-means clustering\",\"authors\":\"Haiyang Huang, Zhanlei Shang\",\"doi\":\"10.3233/web-210460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the traditional network heterogeneous fault-tolerant data mining process, there are some problems such as low accuracy and slow speed. This paper proposes a fast mining method based on K-means clustering for network heterogeneous fault-tolerant data. The confidence space of heterogeneous fault-tolerant data is determined, and the range of motion of fault-tolerant data is obtained; Singular value decomposition (SVD) method is used to construct the classified data model to obtain the characteristics of heterogeneous fault-tolerant data; The redundant data in fault-tolerant data is deleted by unsupervised feature selection algorithm, and the square sum and Euclidean distance of fault-tolerant data clustering center are determined by K-means algorithm. The discrete data clustering space is constructed, and the objective optimal function of network heterogeneous fault-tolerant data clustering is obtained, Realize fault-tolerant data fast mining. The results show that the mining accuracy of the proposed method can reach 97%.\",\"PeriodicalId\":245783,\"journal\":{\"name\":\"Web Intell.\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/web-210460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/web-210460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast mining method of network heterogeneous fault tolerant data based on K-means clustering
In the traditional network heterogeneous fault-tolerant data mining process, there are some problems such as low accuracy and slow speed. This paper proposes a fast mining method based on K-means clustering for network heterogeneous fault-tolerant data. The confidence space of heterogeneous fault-tolerant data is determined, and the range of motion of fault-tolerant data is obtained; Singular value decomposition (SVD) method is used to construct the classified data model to obtain the characteristics of heterogeneous fault-tolerant data; The redundant data in fault-tolerant data is deleted by unsupervised feature selection algorithm, and the square sum and Euclidean distance of fault-tolerant data clustering center are determined by K-means algorithm. The discrete data clustering space is constructed, and the objective optimal function of network heterogeneous fault-tolerant data clustering is obtained, Realize fault-tolerant data fast mining. The results show that the mining accuracy of the proposed method can reach 97%.