基于k均值聚类的网络异构容错数据快速挖掘方法

Web Intell. Pub Date : 2021-11-17 DOI:10.3233/web-210460
Haiyang Huang, Zhanlei Shang
{"title":"基于k均值聚类的网络异构容错数据快速挖掘方法","authors":"Haiyang Huang, Zhanlei Shang","doi":"10.3233/web-210460","DOIUrl":null,"url":null,"abstract":"In the traditional network heterogeneous fault-tolerant data mining process, there are some problems such as low accuracy and slow speed. This paper proposes a fast mining method based on K-means clustering for network heterogeneous fault-tolerant data. The confidence space of heterogeneous fault-tolerant data is determined, and the range of motion of fault-tolerant data is obtained; Singular value decomposition (SVD) method is used to construct the classified data model to obtain the characteristics of heterogeneous fault-tolerant data; The redundant data in fault-tolerant data is deleted by unsupervised feature selection algorithm, and the square sum and Euclidean distance of fault-tolerant data clustering center are determined by K-means algorithm. The discrete data clustering space is constructed, and the objective optimal function of network heterogeneous fault-tolerant data clustering is obtained, Realize fault-tolerant data fast mining. The results show that the mining accuracy of the proposed method can reach 97%.","PeriodicalId":245783,"journal":{"name":"Web Intell.","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast mining method of network heterogeneous fault tolerant data based on K-means clustering\",\"authors\":\"Haiyang Huang, Zhanlei Shang\",\"doi\":\"10.3233/web-210460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the traditional network heterogeneous fault-tolerant data mining process, there are some problems such as low accuracy and slow speed. This paper proposes a fast mining method based on K-means clustering for network heterogeneous fault-tolerant data. The confidence space of heterogeneous fault-tolerant data is determined, and the range of motion of fault-tolerant data is obtained; Singular value decomposition (SVD) method is used to construct the classified data model to obtain the characteristics of heterogeneous fault-tolerant data; The redundant data in fault-tolerant data is deleted by unsupervised feature selection algorithm, and the square sum and Euclidean distance of fault-tolerant data clustering center are determined by K-means algorithm. The discrete data clustering space is constructed, and the objective optimal function of network heterogeneous fault-tolerant data clustering is obtained, Realize fault-tolerant data fast mining. The results show that the mining accuracy of the proposed method can reach 97%.\",\"PeriodicalId\":245783,\"journal\":{\"name\":\"Web Intell.\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/web-210460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/web-210460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在传统的网络异构容错数据挖掘过程中,存在准确率低、速度慢等问题。提出了一种基于k均值聚类的网络异构容错数据快速挖掘方法。确定了异构容错数据的置信空间,得到了容错数据的运动范围;采用奇异值分解(SVD)方法构建分类数据模型,获得异构容错数据的特征;采用无监督特征选择算法剔除容错数据中的冗余数据,采用K-means算法确定容错数据聚类中心的平方和和欧氏距离。构造离散数据聚类空间,获得网络异构容错数据聚类的目标最优函数,实现容错数据的快速挖掘。结果表明,该方法的挖掘精度可达97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast mining method of network heterogeneous fault tolerant data based on K-means clustering
In the traditional network heterogeneous fault-tolerant data mining process, there are some problems such as low accuracy and slow speed. This paper proposes a fast mining method based on K-means clustering for network heterogeneous fault-tolerant data. The confidence space of heterogeneous fault-tolerant data is determined, and the range of motion of fault-tolerant data is obtained; Singular value decomposition (SVD) method is used to construct the classified data model to obtain the characteristics of heterogeneous fault-tolerant data; The redundant data in fault-tolerant data is deleted by unsupervised feature selection algorithm, and the square sum and Euclidean distance of fault-tolerant data clustering center are determined by K-means algorithm. The discrete data clustering space is constructed, and the objective optimal function of network heterogeneous fault-tolerant data clustering is obtained, Realize fault-tolerant data fast mining. The results show that the mining accuracy of the proposed method can reach 97%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信