切换状态空间模型的在线多摄像机跟踪

W. Zajdel, A. Cemgil, B. Kröse
{"title":"切换状态空间模型的在线多摄像机跟踪","authors":"W. Zajdel, A. Cemgil, B. Kröse","doi":"10.1109/ICPR.2004.656","DOIUrl":null,"url":null,"abstract":"The paper presents a novel method for online tracking of multiple objects with non-overlapping cameras. The method is based on a generative model defining probabilistic dependencies between observations, the underlying color properties of objects and their dynamics. It allows for a full Bayesian inference of trajectories. We developed an online algorithm for efficient, approximate inference and we demonstrate it to be accurate in an office environment.","PeriodicalId":335842,"journal":{"name":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Online multicamera tracking with a switching state-space model\",\"authors\":\"W. Zajdel, A. Cemgil, B. Kröse\",\"doi\":\"10.1109/ICPR.2004.656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a novel method for online tracking of multiple objects with non-overlapping cameras. The method is based on a generative model defining probabilistic dependencies between observations, the underlying color properties of objects and their dynamics. It allows for a full Bayesian inference of trajectories. We developed an online algorithm for efficient, approximate inference and we demonstrate it to be accurate in an office environment.\",\"PeriodicalId\":335842,\"journal\":{\"name\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2004.656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2004.656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

提出了一种非重叠摄像机在线跟踪多目标的新方法。该方法基于生成模型,该模型定义了观测值、对象的潜在颜色属性及其动态之间的概率依赖关系。它允许对轨迹进行完整的贝叶斯推断。我们开发了一种有效的在线近似推理算法,并在办公环境中证明了它的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online multicamera tracking with a switching state-space model
The paper presents a novel method for online tracking of multiple objects with non-overlapping cameras. The method is based on a generative model defining probabilistic dependencies between observations, the underlying color properties of objects and their dynamics. It allows for a full Bayesian inference of trajectories. We developed an online algorithm for efficient, approximate inference and we demonstrate it to be accurate in an office environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信