Li Zhang, Lei Shi, Jiashu Zhao, Juan Yang, Tianshu Lyu, Dawei Yin, Haiping Lu
{"title":"基于gnn的个性化视频搜索多任务学习框架","authors":"Li Zhang, Lei Shi, Jiashu Zhao, Juan Yang, Tianshu Lyu, Dawei Yin, Haiping Lu","doi":"10.1145/3488560.3498507","DOIUrl":null,"url":null,"abstract":"Watching online videos has become more and more popular and users tend to watch videos based on their personal tastes and preferences. Providing a customized ranking list to maximize the user's satisfaction has become increasingly important for online video platforms. Existing personalized search methods (PSMs) train their models with user feedback information (e.g. clicks). However, we identified that such feedback signals may indicate attractiveness but not necessarily indicate relevance in video search. Besides, the click data and user historical information are usually too sparse to train a good PSM, which is different from the conventional Web search containing users' rich historical information. To address these concerns, in this paper we propose a multi-task graph neural network architecture for personalized video search (MGNN-PVS) that can jointly model user's click behaviour and the relevance between queries and videos. To relieve the sparsity problem and learn better representation for users, queries and videos, we develop an efficient and novel GNN architecture based on neighborhood sampling and hierarchical aggregation strategy by leveraging their different hops of neighbors in the user-query and query-document click graph. Extensive experiments on a major commercial video search engine show that our model significantly outperforms state-of-the-art PSMs, which illustrates the effectiveness of our proposed framework.","PeriodicalId":348686,"journal":{"name":"Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A GNN-based Multi-task Learning Framework for Personalized Video Search\",\"authors\":\"Li Zhang, Lei Shi, Jiashu Zhao, Juan Yang, Tianshu Lyu, Dawei Yin, Haiping Lu\",\"doi\":\"10.1145/3488560.3498507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Watching online videos has become more and more popular and users tend to watch videos based on their personal tastes and preferences. Providing a customized ranking list to maximize the user's satisfaction has become increasingly important for online video platforms. Existing personalized search methods (PSMs) train their models with user feedback information (e.g. clicks). However, we identified that such feedback signals may indicate attractiveness but not necessarily indicate relevance in video search. Besides, the click data and user historical information are usually too sparse to train a good PSM, which is different from the conventional Web search containing users' rich historical information. To address these concerns, in this paper we propose a multi-task graph neural network architecture for personalized video search (MGNN-PVS) that can jointly model user's click behaviour and the relevance between queries and videos. To relieve the sparsity problem and learn better representation for users, queries and videos, we develop an efficient and novel GNN architecture based on neighborhood sampling and hierarchical aggregation strategy by leveraging their different hops of neighbors in the user-query and query-document click graph. Extensive experiments on a major commercial video search engine show that our model significantly outperforms state-of-the-art PSMs, which illustrates the effectiveness of our proposed framework.\",\"PeriodicalId\":348686,\"journal\":{\"name\":\"Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3488560.3498507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3488560.3498507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A GNN-based Multi-task Learning Framework for Personalized Video Search
Watching online videos has become more and more popular and users tend to watch videos based on their personal tastes and preferences. Providing a customized ranking list to maximize the user's satisfaction has become increasingly important for online video platforms. Existing personalized search methods (PSMs) train their models with user feedback information (e.g. clicks). However, we identified that such feedback signals may indicate attractiveness but not necessarily indicate relevance in video search. Besides, the click data and user historical information are usually too sparse to train a good PSM, which is different from the conventional Web search containing users' rich historical information. To address these concerns, in this paper we propose a multi-task graph neural network architecture for personalized video search (MGNN-PVS) that can jointly model user's click behaviour and the relevance between queries and videos. To relieve the sparsity problem and learn better representation for users, queries and videos, we develop an efficient and novel GNN architecture based on neighborhood sampling and hierarchical aggregation strategy by leveraging their different hops of neighbors in the user-query and query-document click graph. Extensive experiments on a major commercial video search engine show that our model significantly outperforms state-of-the-art PSMs, which illustrates the effectiveness of our proposed framework.