贝尔菲奥-索尔猜想及其对给定晶格的验证技术

Julia Pinchak, B. Sethuraman
{"title":"贝尔菲奥-索尔猜想及其对给定晶格的验证技术","authors":"Julia Pinchak, B. Sethuraman","doi":"10.1109/ITA.2014.6804279","DOIUrl":null,"url":null,"abstract":"We discuss a technique provided by Ernvall-Hytonen for verifying the Belfiore-Sole conjecture for unimodular lattices, a conjecture that arises in the theory of wiretap lattice codes for the Gaussian channel. We provide an alternative proof of a key lemma of Ernvall-Hytonen that avoids dependence on a machine for verification, and as a further example of the technique, we verify the Belfiore-Sole conjecture for unimodular lattices in dimension 34 that arise from certain binary [34, 17, 6] codes, which includes some with trivial automorphism group.","PeriodicalId":338302,"journal":{"name":"2014 Information Theory and Applications Workshop (ITA)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"The Belfiore-Sole conjecture and a certain technique for verifying it for a given lattice\",\"authors\":\"Julia Pinchak, B. Sethuraman\",\"doi\":\"10.1109/ITA.2014.6804279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss a technique provided by Ernvall-Hytonen for verifying the Belfiore-Sole conjecture for unimodular lattices, a conjecture that arises in the theory of wiretap lattice codes for the Gaussian channel. We provide an alternative proof of a key lemma of Ernvall-Hytonen that avoids dependence on a machine for verification, and as a further example of the technique, we verify the Belfiore-Sole conjecture for unimodular lattices in dimension 34 that arise from certain binary [34, 17, 6] codes, which includes some with trivial automorphism group.\",\"PeriodicalId\":338302,\"journal\":{\"name\":\"2014 Information Theory and Applications Workshop (ITA)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Information Theory and Applications Workshop (ITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA.2014.6804279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2014.6804279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们讨论了由Ernvall-Hytonen提供的一种技术,用于验证非模格的Belfiore-Sole猜想,该猜想出现在高斯信道的窃听格码理论中。我们提供了Ernvall-Hytonen的一个关键引理的替代证明,该引理避免了对机器的依赖进行验证,并且作为该技术的进一步示例,我们验证了由某些二进制码[34,17,6]产生的34维单模格的belfior - sole猜想,其中包括一些平凡自同构群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Belfiore-Sole conjecture and a certain technique for verifying it for a given lattice
We discuss a technique provided by Ernvall-Hytonen for verifying the Belfiore-Sole conjecture for unimodular lattices, a conjecture that arises in the theory of wiretap lattice codes for the Gaussian channel. We provide an alternative proof of a key lemma of Ernvall-Hytonen that avoids dependence on a machine for verification, and as a further example of the technique, we verify the Belfiore-Sole conjecture for unimodular lattices in dimension 34 that arise from certain binary [34, 17, 6] codes, which includes some with trivial automorphism group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信