一个蜂群每个女王:随机游戏的粒子群学习

Alain Tcheukam Siwe, H. Tembine
{"title":"一个蜂群每个女王:随机游戏的粒子群学习","authors":"Alain Tcheukam Siwe, H. Tembine","doi":"10.1109/SASO.2016.22","DOIUrl":null,"url":null,"abstract":"This article examines a particle swarm collaborative model-free learning algorithm for approximating equilibria of stochastic games with continuous action spaces. The results support the argument that a simple learning algorithm which consists to explore the continuous action set by means of multi-population of particles can provide a satisfactory solution. A collaborative learning between the particles of the same player takes place during the interactions of the game, in which the players and the particles have no direct knowledge of the payoff model. Each particle is allowed to observe her own payoff and has only one-step memory. The existing results linking the outcomes to stationary satisfactory set do not apply to this situation because of continuous action space and non-convex local response. We provide a different approach to stochastic differential inclusion for arbitrary number of agents.","PeriodicalId":383753,"journal":{"name":"2016 IEEE 10th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"One Swarm per Queen: A Particle Swarm Learning for Stochastic Games\",\"authors\":\"Alain Tcheukam Siwe, H. Tembine\",\"doi\":\"10.1109/SASO.2016.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article examines a particle swarm collaborative model-free learning algorithm for approximating equilibria of stochastic games with continuous action spaces. The results support the argument that a simple learning algorithm which consists to explore the continuous action set by means of multi-population of particles can provide a satisfactory solution. A collaborative learning between the particles of the same player takes place during the interactions of the game, in which the players and the particles have no direct knowledge of the payoff model. Each particle is allowed to observe her own payoff and has only one-step memory. The existing results linking the outcomes to stationary satisfactory set do not apply to this situation because of continuous action space and non-convex local response. We provide a different approach to stochastic differential inclusion for arbitrary number of agents.\",\"PeriodicalId\":383753,\"journal\":{\"name\":\"2016 IEEE 10th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 10th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SASO.2016.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 10th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASO.2016.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了一种粒子群协作无模型学习算法,用于逼近具有连续动作空间的随机博弈均衡。研究结果支持了一个简单的学习算法,即通过多粒子居群探索连续动作集可以提供满意的解决方案。同一玩家粒子之间的协作学习发生在游戏互动过程中,玩家和粒子并不直接了解收益模型。每个粒子被允许观察自己的结果,并且只有一步记忆。由于动作空间的连续性和局部响应的非凸性,将结果与平稳满意集联系起来的现有结果不适用于这种情况。我们提供了一种不同的方法来随机差分包含任意数量的代理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One Swarm per Queen: A Particle Swarm Learning for Stochastic Games
This article examines a particle swarm collaborative model-free learning algorithm for approximating equilibria of stochastic games with continuous action spaces. The results support the argument that a simple learning algorithm which consists to explore the continuous action set by means of multi-population of particles can provide a satisfactory solution. A collaborative learning between the particles of the same player takes place during the interactions of the game, in which the players and the particles have no direct knowledge of the payoff model. Each particle is allowed to observe her own payoff and has only one-step memory. The existing results linking the outcomes to stationary satisfactory set do not apply to this situation because of continuous action space and non-convex local response. We provide a different approach to stochastic differential inclusion for arbitrary number of agents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信